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Professor Huan Z. Huang, Chair

A new form of matter with de-confined quarks and gluons, named the “Quark

Gluon Plasma” (QGP), is predicted by Lattice Qutantum Chromodynamics to ex-

ist at high temperatures and/or high baryon density regions in the QCD phase di-

agram. Experimental evidence indicates that the QCD matter created in high en-

ergy Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC) in Brookhaven

National Lab is a strongly-coupled Quark-Gluon Plasma. One of the central goals

of heavy ion physics is to understand the QGP through quantitative comparisons

between theoretical calculations and experimental measurements. Heavy flavor

quarks are believed to be a unique probe for this task, because they are domi-

nantly produced in the initial hard scatterings, where the production rate can be

well calculated by perturbative-QCD(pQCD). When heavy favor quarks traverse

the QGP medium, they bear the imprints of the medium via their interactions

with the medium. Dynamical models have been developed to calculate the inter-

actions between heavy quarks and the QGP medium to quantitatively extract the

medium properties.

This dissertation presents a series of experimental studies with the electrons
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produced in the semi-leptonic decays of heavy flavor quarks in Au+Au and p+p col-

lisions, which serve as the proxies for heavy flavor quarks. These electrons are

referred to as non-photonic electrons (NPE), to be differentiated from the main

background of photonic electrons. The production of NPE at high pT is found

to be highly suppressed in central and semi-central Au+Au collisions, compared

to binary-collision scaled production in p+p collisions. The azimuthal anisotropy

of NPE is found to be finite at high pT , and the azimuthal correlation between

high pT NPE and low pT hadrons exhibits a broadening in the away-side, both of

which strengthen the evidence for a strong coupling between heavy flavor quarks

and the QGP medium. In addition, the bottom quark production cross-section in

p+p collisions is obtained based on the measured spectrum of NPE and the ratio

of bottom/charm decay electrons.
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CHAPTER 1

Introduction to Relativistic Heavy Ion Collisions

1.1 Introduction to Quantum Chromodynamics

Nuclear and particle physics aims to understand nature in terms of the most

fundamental ingredients and interactions. The most fundamental ingredients, so-

called elementary particles, include spin 1/2 fermions, which are the constituents

of matter, and spin 1 gauge bosons, which are the force carriers. Except gravity,

the other three most fundamental interactions can be well understood by quantum

field theories. Quantum Chromodynamics (QCD), based on the SU(3) group, is

the theory of the strong interactions of colored quarks and gluons.

The triumph of the Standard Model of particle physics, especially in the

language of quantum field theories, builds on its remarkable ability to predict

and explain experimental observations. One of the most discussed examples is

the spin g-factor gs of the electron magnetic moment ~µs = −gsµB(~s/~), where

~s is electron spin, and µB(s/~) is the Bohr magneton. In the Quantum Elec-

trodynamics (QED), where electron-virtual photon interactions are treated per-

turbatively as higher order corrections, (gs − 2)/2 is calculated to be between

1159.6520950 × 10−6 and 1159.6523791 × 10−6 [1]. The uncertainty arises from

the limited knowledge of the fine-structure constant α, since gs can be calculated

to arbitrary precision in theory. The up-to-date experimental result (gs − 2)/2 =

1159.65218073(28)×10−6 [2] exhibits remarkable consistency with theoretical cal-

culations.
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With a much larger coupling constant, perturbative expansion in QCD is im-

possible at low energies. However, as a renormalizable quantum field theory, the

QCD coupling constant depends on the renormalization scale. The β-function

(β(g) = − g3

(4π)2
(11

3
N − 2

3
nf) at high energy), which describes the running of the

coupling constant, is negative thanks to the non-Abelian nature of the strong in-

teraction and the fact that there are less than seventeen different quark flavors

at relevant energy scales [3]. As a result, the strong coupling constant decreases

with increasing energy scale at high energy, an essential QCD property known as

asymptotic freedom. On the other hand, when (anti)quarks are pulled away to a

larger distance, which is equivalent to a lower momentum transfer, the coupling

becomes larger. Eventually, the potential between (anti)quarks grows roughly lin-

early with distance until there is enough energy to make a new pair of quark and

anti-quark, which combines with original (anti)quarks and forms hadrons again.

The strong interaction and the underlying QCD theory are complicated in

many ways, yet extremely intriguing and important. For example, the chiral

symmetry of u, d quarks is spontaneously broken in the strong interaction, due to

the existence of a quark condensate in the vacuum, i.e.< 0|Q̄Q|0 >=< 0|Q̄LQR +

Q̄RQL|0 > 6= 0, with the corresponding Goldstone bosons being the pions [3, 4].

This is the reason why we don’t see another copy of existing hadrons with the same

quantum numbers but opposite parities. This mechanism, structurally similar to

the Higgs mechanism, is responsible for the majority of the mass of light flavor

hadrons. As a result, the mass of the visible matter in the universe is mostly due

to QCD interactions.

The high precision experimental support for QCD and the quark model often

come at relatively high momentum transfer square (Q2), where the strong cou-

pling constant is small enough for perturbative QCD (pQCD) to be applicable.

For example, the dependence of the structure function F2 (the integral of quark

distribution functions) on Q2, often measured in deeply inelastic electron-proton
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scatterings (DIS), is of great importance in our understanding of the structure of

hadrons. Firstly the structure function has a near flat feature, also known as the

Bjorken scaling, and the feature is one of the most important pieces of evidence for

point-like objects in hadrons, supporting the existence of quarks. Secondly, the

evolution of the structure function at various fixed parton momentum fraction, i.e.

Bjorken x = Q2

2p·q
, can be well described by functionals from pQCD calculations in-

volving the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equation, which

describe the parton evolution at large Q2 and fixed x. An example is shown in

Figure 1.1 [5].

Among many other successes of Perturbative QCD, its overwhelming power at

describing the dynamics of hadronic jet production and heavy quark production is

outstanding. The former (hadronic jets) is demonstrated in Figure 1.2 [6, 7], where

the consistence between data and Next-Leading-Order (NLO) pQCD calculations

spans many orders of magnitude and different collision energies. The latter (heavy

quarks) is particularly important for this dissertation and will be discussed in later

chapters.

1.2 The Quark-Gluon-Plasma

Thanks to the intriguing nature of the strong interaction, the QCD phase diagram

is very rich in new physical phenomena. In particular, a new form of matter with

de-confined quarks and gluons has been predicted as early as the 1970’s (see

e.g. [8] for a review), and it has been named the “Quark Gluon Plasma” (QGP).

The QGP is expected at the high temperature and/or the high baryon density

regions of the QCD phase diagram (Figure 1.3 [9]).

The study of the QGP, together with the general exploration of the QCD

phase diagram, deepens our understanding of the thermal properties of strong

interactions and QCD. For example, it is a rare example of a many-body system

3
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target F2 data very well over a broad kinematic range. Figure taken from [5].
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Figure 1.2: Next-to-Leading-Order pQCD calculations compared with jet spectra
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of strong interactions where some quantitative calculations, including pQCD, are

possible. Lattice QCD (LQCD), the principle tool for quantitative QCD calcu-

lations at non-perturbative regimes, has been extensively used to study hadron

masses. QGP provides new dimensions for LQCD to develop further and build

more benchmarks. In addition, it is possible to explore the basic properties and

structures of the QCD vacuum, e.g. LQCD suggests that spontaneously broken

chiral symmetry could be restored in the QGP phase transition [10].

As the state for matter at extremely high temperature and/or high baryon

density, the importance of the QGP extends beyond particle and nuclear physics.

A QGP phase with baryon density vastly above normal nuclear density, corre-

sponding to the bottom right corner of Figure 1.3, may exist in neutron stars.

A QGP phase with extremely high temperature, expected to be at the left top

corner of Figure 1.3, may exist in the early universe one microsecond after the Big

Bang [11, 12, 13, 14, 15]. The study of QGP also has a significant impact on our

understanding of the universe.
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Figure 1.3: Theoretical expectations of the QCD phase diagram. The markers
(blue triangles, red squares, and green stars) roughly indicate the range accessible
via heavy ion colliders, including Heavy Ion Synchrotron(SIS) at Helmholtzzen-
trum für Schwerionenforschung(GSI), Alternating Gradient Synchrotron(AGS) at
Brookhaven National Laboratory (BNL), the Super Proton Synchrotron(SPS) at
European Organization for Nuclear Research (CERN) and Relativistic Heavy Ion
Collider (RHIC) at BNL. Figure taken from [9].
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A sufficiently high temperature is the key to creating this new form of matter

in colliders. Following a more complete calculation in chapter one of [16], one can

use a simplified picture to roughly obtain the magnitude of the temperature for the

phase transition, if any, between QGP and hadronic matter. The MIT bag model

of hadrons [17] says there is an external negative pressure present in a system with

parton degrees of freedom, such as in QGP. The bag pressure B is determined to

be around (150MeV )4 [18]. As the QGP cooling down to lower temperature, a

transition into hadronic matter takes places, which has smaller number of degrees

of freedom but no bag pressure any more. In the approximation of non-interacting

and massless particles, the (Stefan-Boltzmann) pressure is PSB ∝ g T 4, where

g is number of degrees of freedom. In the transition stage, it is reasonable to

assume the two systems have the same pressure, so gQGP × T 4
c − B = ghad ×

T 4
c , where Tc means the critical temperature at the phase transition. Thus, the

transition temperature depends on the bag pressure and weakly on the relative

change of number of degrees of freedom, as a result of it being related to T 4. Since

the relative change of number of degrees of freedom is not orders of magnitude

away from 1, the transition temperature is roughly on the order of B1/4, i.e.

on the order of 100 MeV. Indeed, recent LQCD calculation suggests that this

transition temperature is around 160 MeV for zero chemical potential, as shown

in Figure 1.4 [10, 14], where the active number of degrees of freedom, indicated

by p/T 4, rapidly increases. The emerging new degrees of freedom indicate a new

form of matter is created, and we know that it is with partonic level degrees of

freedom in LQCD.
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Figure 1.4: A LQCD calculations of pressure as a function of temperature for
different treatments of partons. The rapid change in pressure is in response to the
change in the active number of degrees of freedom. Figure taken from [10].
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1.3 The experimental probes of QGP

1.3.1 A little history

The idea of creating the QGP in a laboratory by colliding heavy ions was dis-

cussed almost concurrently with the theories. For example, in 1974, T. D. Lee

and G. C. Wick proposed that “one may produce the abnormal nuclear state by

increasing the nuclear density through, say, high-energy collisions between very

heavy nuclei.” [19]. For more examples, see [20]. For decades, vast experimental

efforts have been made to search and study the QGP with heavy ion collisions at

a succession of facilities with increasing energy.

The most pioneering work began in the late 1970’s and early 1980’s on the

Bevalac accelerator at Lawrence Berkeley National Laboratory(LBNL). With top

bombarding energy of ≤ 2.1GeV, a milestone phenomenon called “collective flow”

was discovered, indicating nuclear matter can indeed be compressed in nuclear col-

lisions [21]. Experimental programs continue at the Heavy Ion Synchrotron(SIS)

at Helmholtzzentrum für Schwerionenforschung(GSI), Alternating Gradient Syn-

chrotron(AGS) at Brookhaven National Laboratory (BNL) and the Super Proton

Synchrotron(SPS) at European Organization for Nuclear Research (CERN) at
√
s

around a few GeV. Nowadays, the Relativistic Heavy Ion Collider (RHIC) at BNL

can provide heavy ion collisions at a broad range of
√
s from several GeV up to

200 GeV and the Large Hadron Collider at CERN holds the highest energy record

of 2.76 TeV.

1.3.2 The stages of high energy heavy ion collisions at RHIC

When approaching each other at an energy of 100 GeV per nucleon, the two

colliding Au ions are Lorenz-contracted into two disks with high density and in

the overlapping region a fireball is created in the collision. The dimension and the
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energy density of the fireball vary with the impact parameter, directly related to

the centrality of the collision. The centrality reflects the integrated percentile of

geometrical cross section of heavy ion collisions, for example the 0 ∼ 5% centrality

contains the most central collisions corresponding to the top 5% geometrical cross

section with the smallest impact parameters. The most peripheral collisions are

similar to an incoherent sum of a few p+p collisions, where no QGP is expected.

In central and semi-central collisions, the energy density is high enough and the

fireball soon reaches a (locally) thermalized equilibrium state with relevant parton-

level degrees of freedom at very high temperature. This hot and dense medium at

RHIC has features consistent with the state of QGP, as shown in Figure 1.5. This

QGP medium expands rapidly with falling energy density until the temperature

decreases to the critical temperature Tc when the medium evolves into a mixed

phase where partonic and hadronic matter may coexist. At the chemical freeze-

out boundary, hadronization takes place and the hadron species are fixed, with

temperature Tch. The final hadrons interact with each other kinematically in a

non-equilibrium hadron gas state, and the interactions cease at the kinematic

freeze-out boundary with temperature Tki (or Tfo as in Figure 1.5).

1.3.3 Particle production

One important feature of particle production in Au+Au collisions at RHIC is that

different transverse momentum (pT ) regions may come from different production

mechanisms. The bulk of the particles falls into the so called soft sector, with

approximately pT < 2 GeV/c, and they are dominated by thermal production

from the QGP medium. The hard sector is the high pT particles (approximately

pT > 6 GeV/c) sitting in the perturbative domain, which are mainly produced in

jet fragmentation. At pT between 2 GeV/c and 6 GeV/c, coalescence comes into

play.

In the soft sector, the particle production exhibits features of thermal statistics
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Figure 1.5: A schematic view of the time evolution of the QGP. Figure taken
from [9].

11



and the differential particle spectra at middle rapidity can generally be described

by hydrodynamics. Firstly, the production yield for different hadron species,

especially the comparison between non-strange and strange hadrons, is consistent

with thermal statistical production. Figure 1.6 shows a recent thermal statistical

model being able to describe the production yield of various particles [22] in

Au+Au collisions, including strange particles.

Figure 1.6: The yields of different hadrons, compared with a thermal statistical
model fit of combined data. Figure taken from [22].

Secondly, the particle pT spectra can be well reproduced by hydrodynamics cal-

culations up to about 2GeV/c, shown in Figure 1.7 upper plot. The determination

of the soft sector as pT < 2GeV/c is partially based on the spectra comparisons,

and partially based on the elliptic flow measurements to be discussed later. A

clear mass ordering of mean pT , almost following a straight line, is also observed
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in the lower plot, which is a characteristic result of hydrodynamic expansion. In

a hydrodynamical system, particles behave collectively forming an universal ve-

locity field for different particles, resulting that particles with higher mass obtain

larger momentum. The hydrodynamic calculations shown in Figure 1.7 is a hy-

brid combining three-dimensional hydrodynamics for the equilibrium QGP stage

of the medium and a transport approach for the non-equilibrium hadronic stage.

Such a combination produces a better agreement with data over hydrodynamics

alone [24].

1.3.4 Elliptic flow

In most heavy ion collisions, the overlapping area of two near-spherical ions is an

ellipsoid shape with a finite eccentricity, like an almond. With a constant pressure

at the boundary of this almond-shaped fireball, the pressure gradient along the

minor axis of the fireball is higher than that along the major axis. This asymmetric

pressure field boosts the particles flying outwards asymmetrically, exhibiting more

push by the higher pressure gradient along the minor axis, leading to an azimuthal

anisotropy in momentum space. At the same time, the original eccentricity of the

fireball is diminishing due to the fact that the expansion is more rapid along the

minor axis. In other words, this is a self-quenching process. Therefore, the final

azimuthal anisotropy in the collective motion of the bulk particles is very sensitive

to the early time evolution of the fireball and provides a valuable tool to probe

the Equation of State (EoS) of the fireball. Fourier decomposition has often been

applied to the differential particle spectra with respect to the azimuthal angle,

as in Equation 1.3.1, and the second harmonic term is the most significant term

representing the azimuthal anisotropy of hadrons in momentum space, and the

coefficient v2 is called the elliptic flow [25].
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Figure 1.7: Upper Plot: The transverse momentum pT spectra for π, K and
p measured by PHENIX [23], compared with a hydrodynamics calculation [24].
Lower Plot: The mass ordering of mean pT . Both figures are taken from [24].
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In principle, the azimuthal angle should be written with respect to the true

reaction plane Ψr in each collision, which is defined by the beam direction and the

impact parameter [14]. However, this true reaction plane can not be definitively

measured, but only approximately estimated. The estimator, usually based on the

angular distribution of final state particles, is referred to as the event plane ΨEP

and the effects due to the finite number of final state particles can be incorporated

into the event plane resolution corrections [25].

Figure 1.8 shows the elliptic flow for various hadrons [26, 27, 28] in heavy

ion collisions. The large magnitude of the elliptic flows can also be observed in

hydrodynamic calculations with partonic degrees of freedom, which also suggest

a system with hadronic level degrees of freedom does not have enough coupling

to produce the large elliptic flows. Moreover, hydrodynamics captures two main

features of the measured elliptic flow. Firstly, the mass ordering is clearly present.

Because a common collectivity (such as the elliptic flow) pushes particles at a

common velocity, more heavier hadrons get pushed to higher pT . As a result,

heavier hadrons at higher pT can be found to have the same elliptic flow of lighter

hadrons at lower pT . Secondly, for any specific particle type, the elliptic flow

increases with increasing pT , because particles can be boosted to higher velocities

along the direction with larger pressure gradient and larger elliptic flow [29].

Since near zero mean free path is required for a system to evolve hydrodynam-

ically, the successful application of hydrodynamics at RHIC strongly support the

conclusion that the hot and dense QCD medium created at RHIC is indeed in

a state of thermal equilibrium, with microscopic ingredients strongly interacting

with each other. This is a major finding at RHIC since the QGP was expected

to be in a gas-like state with weak couplings. Recently, the hydrodynamical cal-
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Figure 1.8: The elliptic flow of various hadrons as a function of pT from STAR [26,
27] and PHENIX [28], compared with an early hydrodynamics calculation [30].
Figure taken from [26].

culations used at RHIC have many new developments, including 1) hybrid types

with transport cascade modules implemented after hydro evolution to deal with

hadronization and hadron interactions in the final state, 2) different implementa-

tions of the initial condition of the collisions, and 3) viscous hydro calculations

with finite shear viscosity to entropy density ratio η/s. For a recent review, see

e.g. [31]. One of the crucial information we learned with these recent develop-

ments is that the shear viscosity to entropy ratio η/s is so low in this hot and

dense QCD medium created at RHIC that it is called a “perfect” liquid [32]. The

η/s ratios that make hydro-data consistent, as shown in Figure 1.9, are always

smaller than 0.16, and are in the vicinity of the KSS bound ( 1
4π

) for any strongly

coupled quantum liquid as predicted using the string theory [33].

At intermediate pT approximately between 2 ∼ 6 GeV/c, experimental v2 val-

ues deviate from hydro calculations, and they reach a saturation region, as shown

in Figure 1.8. A novel phenomenal of Constituent Quark Number Scaling of v2

was discovered experimentally. In Figure 1.10 upper plot, both v2 and pT of
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Figure 1.9: The elliptic flow at a function of Number of participant (Npart) and
pT measured by PHOBOS [34] and STAR [35], compared with viscous hydrody-
namical calculations with various η/s ratios [36]. Figure taken from [36].
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various hadron species are divided by the number of constituent quarks (nq) in

the hadrons, i.e. nq=2 for mesons and 3 for baryons, and the number-of-quark

scaled elliptic flows for different types of hadron converge together. The Con-

stituent Quark Number Scaling can be readily understood as the elliptic flow of

intermediate pT hadrons come from the combination of an universal distribution

for constituent quarks. This finding has become one of the most direct pieces of

evidence for partonic degrees of freedom in the QCD medium. This also leads to

the understanding that the main microscopic process of intermediate pT hadron

production is via quark recombination/coalescence. However, the quark recombi-

nation/coalescence is not necessarily simple 2 → 1 and 3 → 1 processes, and more

realistic models are under development, for example, the Resonance Recombina-

tion Model [38]. The quark recombination/coalescence model is a microscopic

view of hadronization and is compatible with thermal and hydro particle pro-

duction. The Constituent Quark Number Scaling does not hold for low pT , as

shown in Figure 1.10 lower plot, where particle hadronization could still proceed

through recombination processes, but the recombination could be complicated

and the hadrons do not necessary follow the simple kinematic properties of the

constituent quarks.

The properties of the bulk soft and intermediate particles, i.e. the hydrody-

namic expansion and Constituent Quark Number Scaling, lead to the conclusion

that the active degrees of freedom in the hot and dense medium created at RHIC

is indeed partonic. Given the unexpected strong couplings among the ingredients,

this new state of matter is properly named a sQGP (strongly coupled Quark Gluon

Plasma) [14]. At high pT most particles are clearly not from thermal statistical

production from the medium any more, but rather from the high Q2 scatterings

at the initial stage of the collision. However, finite v2 is still observed due to

path-length dependence of energy loss in the QGP, which will be discussed in the

next section.
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Figure 1.10: Upper Plot: The number-of-quark-scaled elliptic flow as a function
of number-of-quark-scaled pT measured at RHIC. The dotted curve is a universal
fit to all hadron species. Lower Plot: The deviation of each hadron from the fitted
universal distribution. Figure taken from [37].
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1.3.5 Jet quenching

High energy partons traversing the hot and dense medium interact with the

medium and lose energy due to QCD color charge interactions. The initial pro-

duction of high energy partons per binary nucleon-nucleon collision is expected

to be comparable in p+p collisions and heavy ion collisions, except for some

initial state and/or other cold nuclear matter effects, which were estimated to be

minor at RHIC for moderate Bjorken x, as we shall see later. If there are no

interactions between high energy partons and the medium, then the final states of

high pT particles, either in terms of (the leading-particles of) jets or heavy flavor

hadrons, should also be the same in p+p and in heavy ion collisions. In other

words, the observed differences reflect the interactions between the high energy

partons and the medium. Consequently, high energy partons are powerful hard

probes to study the properties of the medium.

It is necessary to evaluate initial state effects before one separates the final

state effects. First of all, the quark distribution in nuclei is known to be different

from that in nucleons, and the ratio of the structure function in nuclei divided

by the incoherent sum of that in nucleons RA
F2

=
F A

2

AF N
2

quantifies the difference,

shown in Figure 1.11. Four regions of Bjorken x are identified separately:

• the large x region (approximately x > 0.8) is the Fermi motion region where

the parton carries a large fraction of the nucleon momentum along with the

fermi motion of the nucleons.

• approximately 0.3 < x < 0.8 is named the EMC region where the RA
F2

becomes lower than unity, because it was discovered by the European Muon

Collaboration [40]. For a review, see for example [41].

• approximately 0.1 < x < 0.3 is the anti-shadowing region where RA
F2
> 1 to

compensate the suppressed RA
F2

elsewhere.
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• the small x region (approximately x < 0.1) is the shadowing region where

RA
F2

slowly decreases with diminishing x. Generally speaking, the shadowing

is caused by large parton density in the region.

Figure 1.11: A sketch of the nuclear structure function divided by the incoherent

sum up of nucleon structure functions (RA
F2

=
F A

2

AF N
2

, F2 is the structure func-

tion discussed in the previous section) as a function of Bjorken x. Figure taken
from [39].

For most high pT partons with pT at a few to a dozen GeV in Au+Au collisions

at 200 GeV, they correspond to x ∼ 0.1, i.e. just entering the shadowing region,

so the initial state effect can be very minor. In addition, there is another type of

initial state effect, namely the Cronin effect, which can be understood dynamically

as, after the initial hard parton-parton scattering, the outgoing partons have a

certain chance to scatter with other parton(s) in the nuclei. The probability of

such a process is very small in elementary collisions, but enhanced by the thickness

of nuclei in heavy ion collisions. These effects are also known as cold nuclear

effects (CNE), in contrast to the interactions with the hot dense QCD medium.

Since the direct photons created in the initial scatterings do not interact with the

QCD medium, they can be used to study the CNE. Also, particle production at
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forward rapidity involving small x is another important tool. Nevertheless, one of

the most convincing ways to understand the magnitude of the CNE is to use d+Au

collisions as a reference experiment, where CNE is present in Au nuclei but the size

of deuteron is too small to create a QCD medium. In Figure 1.12, high pT hadron-

hadron azimuthal correlation is measured for p+p, d + A and Au+Au collisions.

The hadrons are required to be at high pT so that they are likely to be the

leading particles of jets, whose parent partons are created in pairs in the initial

hard scatterings. The created pair of partons move along opposite directions in

the transverse plane, as a result of momentum conservation, and give rise to the

correlated peak on the away side ∆φ = π, seen in both p+p and d+Au collisions.

However, in Au+Au collisions one of the partons is scattered in the QCD medium

so it loses significant energy as well as the original direction, resulting in the

quenching of the peak on the away side. This phenomenon is known as the jet

quenching and the contrast between d+Au and Au+Au indicates the final state

effect dominates over any initial state effects in the measured kinematic region.

Figure 1.12: Dihadron correlations for different collision systems. The contrast
between d + Au and Au+Au indicates overwhelming final state effects. STAR
data from [42]. Figure taken from the STAR Decadal plan.

We use the nuclear modification factor RAA to quantitatively study jet quench-
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ing, defined as

RAA(pT ) =
dN2

AA/(dpTdy)

< Ncoll > dN2
pp/(dpTdy)

(1.3.2)

where the RAA is essentially the ratio of scaled particle yields in different

collisions. The p+p yield is scaled by Ncoll, number of binary (nucleon) colli-

sions, which is estimated via models. The most widely used model is the Glauber

model [43], in which

Ncoll(~b) = ABT̂AB(~b)σNN
inel (1.3.3a)

T̂AB(~b) =

∫

T̂A(~s)T̂B(~s−~b)d2s (1.3.3b)

where A and B are the mass numbers, TA and TB are the nuclear thickness

function describing the nuclear profile and~b is the impact parameter. The connec-

tion between the model calculation and experiment is can be obtained by matching

the dσ/db in the model with dNevent/dNch from experimental data.

As aforementioned, if heavy ion collisions are merely the incoherent sum of

elementary nucleon collisions, i.e. if CNE and QGP are absent, RAA should be

unity. Experimentally RAA values are found to be much smaller than one for

high pT light flavor hadrons, i.e. the jet quenching. Figure 1.13 summarizes the

measured RAA covering a very broad pT range at various collision energies at 3

generations of accelerators. Theoretical model calculations are also presented for

comparison.

Similar to the case of QED, the high energy partons lose energy in the QCD

medium via i) medium induced gluon bremsstrahlung radiation and ii) elastic col-

lisions with the constituents of the medium. The induced gluon radiation has been

extensively studied in the language of pQCD by many formalisms and models. For
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Figure 1.13: A recent summary plot of RAA measured over the last decade at
different facilities, compared with various theoretical calculations. See the text
for more details on the theoretical calculations. Figure taken from [44].
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example, Figure 1.13 shows calculations with Gyulassy-Levai-Vitev (GLV) [45,

46], Armesto-Salgado-Wiedeman (ASW) [47], YaJEM (Yet another Jet Energy-

loss Model) [48] and Baier-Dokshitzer-Mueller-Peigné-Schiff (BDMPS) [49] for-

malisms. (BDMPS is used by the Parton-Quenching-Model [50] in the Figure).

There is also the High-Twist (HT) [51] formalism, not shown here. All of them

are based on pQCD calculations, sharing some common assumptions, including:

• Collinear factorization. Collinear factorization assumes that the whole pro-

cess can indeed be separated into several sequential incoherent stages, such

as the initial production of hard probes in the high momentum transfer

scatterings, the hard probes traveling through the QCD medium and then

hadronization. (Except the HT formalism, where hadronization is coupled

with medium interaction and the fragmentation functions are modified by

the medium.)

• The hadronization of high energy partons happens outside the medium.

This is reasonable since the energetic partons are very relativistic and thus

the formation time of hadrons is largely Lorenz elongated. (Except HT and

certain model calculations [52] for heavy flavor quarks.)

• The medium itself is non-perturbative but the interaction between high en-

ergy partons and the medium is perturbative.

• The medium is modeled to evolve independently of the hard parton, if not

entirely static.

At the core of these pQCD formalisms for gluon radiation is the quantum

effect named after Landau, Pomeranchuk and Migdal (LPM) [53], which states

that during the formation time of the bremsstrahlung photons/gluons, the inter-

ferences of the multiple scatterings over the path length (of the photons/gluons

going through the medium) is usually destructive. This leads to a radiation rate
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depending on parton path length L, and results in a characteristic quadratic path

length dependence for the parton total energy loss ∆E ∝ q̂L2, albeit the exact

dependence differs in different formalisms. The transport coefficient q̂, defined

as mean momentum transfer per path length, is a variable that quantitatively

measures the property of the medium. For example, it relates to the density of

scattering centers in the medium as well as the interaction mechanisms, and the

extraction of the transport coefficient via model-data comparisons is one of the

scientific goals of heavy ion physics.

These formalisms and models have different dynamical treatments of the QCD

medium and the kinematics of the interactions. For example, while BDMPS

regards the medium as multiple soft scattering centers, GLV considers few hard

scatterings (current calculations consider only one hard scattering). In addition,

although most models only focus on the leading partons, recent Monte Carlo

simulations, such as YaJEM, study the whole shower evolution. For recent reviews

and comparisons, see for example [54, 31].

These models all agree with data reasonably well, with a wide range of ex-

tracted (equivalent) q̂ to be approximately 2∼20 (GeV )2/fm. The measurements

of RAA alone, not to mention the experimental precision on RAA, do not have the

necessary power to distinguish models. More differential and alternative probes

are needed.

One of the promising probes to provide more constraints is the elliptic flow

at high pT . As demonstrated in Figure 1.14, the path length is different along

the major and minor axes of the fireball, so the energy loss of partons travers-

ing different axis could be different as well, resulting in different magnitude of

quenching azimuthally and consequently an effective elliptic flow at high pT . The

present measurement of elliptic flow at high pT seems to indicate the total en-

ergy loss may have a stronger than quadratic dependence on the path length, as

∆E ∝ q̂Ln, n ≥ 3 [55]. One of the explanations being put forward is that the jet
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quenching is stronger in some regions of the medium with temperature near the

critical temperature Tc [56].

Figure 1.14: A cartoon of high energy parton traversing the QCD medium. The
parton could experience different path lengths at different azimuthal angles (path
length L1 is shorter than L2 ), demonstrating the generation of high pT elliptic
flow.

1.3.6 heavy flavor

At RHIC top energy, heavy quarks (charm and bottom) are dominantly created in

initial gluon fusions and the production rates can be calculated by pQCD frame-

work [57]. Unlike the hadronic jet production where pT is the only relevant energy

scale, two relevant energy scales, the heavy quark massmQ and transverse momen-

tum pT , are present in the heavy flavor production. Therefore, re-summation of

the logarithmic terms log(pT/mQ) improves the calculation [58]. One calculation

with such re-summation implemented is the Fixed-Order plus Next-to-Leading-

Logarithm (FONLL) calculation in [59].

When heavy quarks traverse the QCD medium they also interact with medium.

Theoretically we do expect the magnitudes, and even the mechanisms, to be

different from that of light partons, at least in two aspects:

• Firstly, there is a hierarchy for radiation energy loss, i.e. ∆E(g) > ∆E(q) >

∆E(c) > ∆E(b), where the first inequality is caused by the color-factor

(Casimir) of gluons CA = 3 being larger than that of quarks CF = 4/3. The

latter part of the inequality is due to the dead cone effect [60], in which

the gluon radiation of heavy quarks is largely suppressed within the forward
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direction as a result of reduced accelerations and decelerations of massive

heavy quarks.

• Secondly, there could be a considerable contribution from the elastic col-

lisions. This is similar to the scenario of an electron traversing through

normal matter, where the rate of radiation (i.e. bremsstrahlung) energy

loss will not surpass the collisional (i.e. ionization) energy loss unless the

electron energy exceeds a critical energy. The collisional energy loss could

be relatively large for heavy quarks at moderate to low energy.

Overall, dynamical models predicted, at most, a moderate suppression for

heavy quarks, which contradicts the experimental discoveries shown in Figure 1.15

and Figure 1.16. Experimentally, we found the heavy flavor decay electrons, as

proxies of heavy quarks, are suppressed as much as the light flavor hadrons, and

a finite heavy flavor elliptic flow, if confirmed with more precise data, could also

suggest a strong heavy flavor coupling to the medium. This unexpected contra-

diction is sometimes referred to as the “the heavy quark jet puzzle” and has been

regarded as one of the outstanding problems in the field [64, 65].

Many theoretical attempts have been made to attack it from various aspects,

e.g. [66, 67, 52], including efforts from the string theory via the gauge-string

duality , the so called AdS/CFT correspondence(anti de Sitter/conformal field

theory correspondence) [68, 69]. For a recent review, see for example [70, 71].

In a brief summary, the early model calculations can match data only if the

heavy flavor electrons are exclusively from charm decays. However, according to

both theoretical [59] and experimental studies [72], bottom quark could begin to

contribute significantly at below 5GeV/c, albeit with considerable uncertainties.

We will discuss the most recent theoretical developments in later chapters, after

our analyses are presented.

To quantitatively understand the QGP state created at RHIC, our goal is
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(a) Heavy flavor decay electrons spectra (b) Heavy flavor decay electrons RAA

Figure 1.15: The spectra and RAA of heavy flavor decay electrons measured by
STAR. Theoretical calculations are compared. DVGL is a generalization based on
the GLV formalism. The van Hess calculation is an elastic collisional energy loss
calculation. EL denotes additional elastic collisional energy losses are considered.
See [61] and references therein. Figure taken from [61]

to improve the measurement of STAR RAA and the elliptic flow of heavy flavor

decay electrons from heavy ion collisions. The previous STAR data have very large

uncertainties, as shown in Figure 1.15. Recently, we have improved the precision of

the measurement of heavy flavor decay electron production in p+p collisions [73]

with an uncertainty level of roughly 20%. The motivation of this dissertation is to

make precision measurements in Au+Au collisions and initiate a comprehensive

set of studies with heavy flavor decay electrons.

The heavy flavor decay electrons are also called Non-Photonic Electrons (NPE),

since the biggest electron background in this analysis is photonic electrons, and we

will use this name in this dissertation. For simplicity, both electrons and positrons

are referred to as electrons, unless otherwise explicitly specified.

This dissertation is organized as follows. In chapter one, we will introduce

the QGP and discuss the current experimental and theoretical understandings.

In chapter two, we will discuss the apparatus used for this analysis, namely the

RHIC accelerator and STAR detector. In chapter three, the common details
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Figure 1.16: The RAA and elliptic flow of heavy flavor decay electrons measured by
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Teaney [63] considers the heavy quark energy loss as a diffusion problem. See [62]
and references therein.
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of all NPE analyses will be discussed and the results of NPE pT spectrum will

be presented. In chapter four, we will outline additional/specific steps for NPE

azimuthal anisotropy and NPE-hadron azimuthal correlation analyses and the re-

sults will be shown. The comparisons to model calculations are discussed immedi-

ately after each measurement. In chapter five, we will discuss the measurement of

the bottom quark production cross-section in p+p collisions. Finally, in chapter

six, well will conclude this dissertation and discuss the outlook.
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CHAPTER 2

Experimental set-ups

2.1 Relativistic Heavy Ion Collider

The Relativistic Heavy Ion Collider (RHIC) complex at Brookhaven National

Laboratory is a national QCD facility designed to accelerate heavy and light ions,

e.g. gold ions and deuterons, as well as polarized protons to relativistic energies.

The highest center-of-mass energy per nucleon-nucleon pair is 200 GeV for heavy

ion collisions and 500 GeV for p+p collisions. It is, so far, the only collider that

can collide polarized protons. It can also provide collisions at a wide range of

energies, reaching as low as a several GeV, with any nucleus species from protons

to uranium.

The RHIC complex is composed of several subsystems, including the main

RHIC ring, the Alternating Gradient Synchrotron (AGS) and other components.

A schematic drawing of this complex is shown in Figure 2.1. The main RHIC

rings utilize super-conducting magnets to provide strong magnetic fields, and the

focusing is stronger than needed for a proton collider in order to accommodate

the stronger Coulomb repulsion among the heavy ions. The main RHIC rings are

composed of two identical, quasi-circular, 2.4 mile rings, and they intersect at six

locations [74]. The STAR experiment is located at 6 o’clock, and the PHENIX

experiment is located at 8 o’clock. The PHOBOS and BRAHMS experiments

used to be located at 10 and 2 o’clock, respectively.

The ions are accelerated step-by-step and we will mainly discuss gold ions
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Figure 2.1: A schematic drawing of the RHIC complex. Figure taken from [74].
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here. Step 1: After being produced by the ion sources, the heavy and light ions

are sent into the Tandem Van De Graaff accelerator, whereas the protons are sent

into the 200 MeV linear accelerator (LINAC). Both the Tandem Van De Graaff

accelerator and the LINAC use an electric potential to accelerate charged particles.

For example, in the Tandem Van De Graaff accelerator, 32 electrons are stripped

off a gold atom, and the 32+ charged gold ions will be accelerated to about 1 MeV

per nucleon. There are two Tandem Van De Graaff accelerators at RHIC, and

they can both be used at the same time in order to achieve collisions between

different nucleus species, such as deuterium + gold (d+Au) collisions. From year

2012, a new beam injector, the Electron Beam Ion Source(EBIS), along with two

small linear accelerators, will replace the Tandem Van De Graaff accelerators.

They will enable easier operation and maintenance, and the acceleration of more

nucleus species, including uranium, will be achievable [32].

Step 2: After Step 1, the ions from the Tandem Van De Graaff accelerator

enter the Booster Synchrotron (the AGS-Booster in Figure 2.1). A synchrotron is

a circular accelerator with the accelerating voltage adjusted to synchronize with

the circulation period of the particles being accelerated [32].

Step 3: The gold ions then enter the AGS, which is well known for its three

Nobel-Prize-discoveries, the J/Ψ particle (1976), CP violation in kaon decay (1980)

and the muon neutrino (1988). This synchrotron is named with “Alternating Gra-

dient” since the field gradients of the focusing magnets are successively alternated

in orthogonal directions [32]. While the effect for each magnet is focusing in one

direction and defocusing in another direction at one time, the overall effect is fo-

cusing in both directions. The gold ions leave AGS with energy around 10 GeV

per nucleon, and are stripped to a 77+ charge state [75].

Step 4: The gold ions then enter the AGS to RHIC transfer line (AtR), and

a foil at the beginning of this line strips off the last two electrons from the gold

ions. Then the ions begin their final acceleration and storage in the main RHIC
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rings. The two beams can be accelerated, or even deaccelerated, to various final

collision energies, and can be stored for up to 10 hours.

Since year 2010, the RHIC accelerator has been successfully increasing its

luminosity. From year 2012, stochastic cooling will be fully applied in RHIC rings

and a dramatic improvement on the luminosity is expected [32].

2.2 STAR detector system

2.2.1 Overview

The Solenoidal Tracker at RHIC (STAR) [76] is made of several sub-detectors

covering a large solid angle. As the name suggests, at the heart of STAR is

the cylindrical-shaped Time Projection Chamber (TPC), which provides particle

tracking and particle identification (PID) via track ionization energy loss [77].

The beam crossing point is at the center of the TPC and we label the beam

direction as the Z direction. Since Run08, the TPC has been the innermost

tracking device at STAR. Between the TPC and the beam pipe, there used to

be a Silicon Vertex Tracker (SVT) and a Silicon Strip Detector (SSD), which

have been decommissioned for the ongoing Heavy Flavor Tracker (HFT) upgrade.

Surrounding the TPC, the Time-of-Flight Detector (TOF) [78] was completed

in 2010, extending STAR PID ability to above 1 GeV/c [79]. Outside the TOF

is the STAR calorimeter system, made of the Barrel ElectroMagnetic Calorime-

ter (BEMC) and the Barrel Shower Maximum Detector (BSMD) [80]. There is

an End-cap ElectroMagnetic Calorimeter (EEMC) in one side of STAR covering

pseudo-rapidity range 1.086 ≤ η ≤ 2.00 and 2π in azimuthal angle[81]. Outside

the BEMC is the STAR magnet coils and Iron York, which provides a magnetic

field along the beam line with ±0.25 T and ±0.5 T [82]. The outermost cylindrical

layer is the Muon Telescope Detector (MTD) [83], to be completed in 2014.

STAR also has several other sub-detectors for various purposes, including beam
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monitoring and triggering. A pair of scintillator detectors, called the Beam−Beam

Counters (BBC), are located at high pseudo-rapidity positions at either side 3.5

meters away from the center of STAR, monitoring event rates in p+p collisions.

A pair of Zero Degree Calorimeter Detectors (ZDC) are located along the beam

pipe on both sides of the collision region [84], monitoring small-angle scattering

of neutral particles such as spectator neutrons from the collisions. A pair of Ver-

tex Position Detectors (VPD) are also located very close to the beam pipe at

Z= ±5.6 meters at both sides [78]. The pair of VPDs provides the start time of

collisions, which is essential for particle time-of-flight measurements. All of the

three detectors are fast enough to serve as trigger detectors. The Forward Meson

Spectrometer (FMS), replacing its predecessor Forward Pion Detector (FPD), is

located at 7.5 meters West of STAR, and it mainly detects neutral mesons such

as the π0. The Forward Pion Detector (FPD) is moved to the east of STAR. A

schematic side view of the STAR detector is shown in Figure 2.2.

Figure 2.2: A schematic side view of STAR.
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2.2.2 The Time Projection Chamber

The STAR TPC surrounds the beam pipe and the beam crossing regime, covering

pseudo-rapidity range −1.8 ≤ η ≤ 1.8 and 2π in azimuthal angle. It has an Inner

Field Cage (IFC) with a radius of 50 cm, and an Outer Field Cage (OFC) at

radius 200 cm. The IFC, OFC and the end caps at both ends of the TPC seal

the P10 gas (10% methane, 90% argon) inside [77]. There is a Central Membrane

(CM) at the center of the TPC, dividing the TPC into two halves, each 210 cm

long. See Figure 2.3 for an illustration.

The materials for the field cages were carefully selected to reduce the photonic

conversions and multiple Coulomb scatterings. The material budget is 0.13% X0

for the 40 cm insulating gas between IFC and beam pipe, 0.52% X0 for the IFC,

and 1.26%X0 for the OFC. The P10 gas itself presents a considerable contribution

of 1.17% X0 [77].

An electric field is generated by the 28 kV negative potential applied on the

CM, which serves as the Cathode. The Anode of this electric field is the end caps

at ground. The field cages are segmented into a total of 182 conducting rings,

biased by 2 MΩ resistors between the rings. The potentials on the rings gradually

change from ground to negative 28 kV, the closer to the CM the more negative.

Together, the field cages, the CM and the end caps provide a uniform electric field

pointing to the center of the TPC (Z=0) from both ends of the TPC(Z=±210 cm),

with a field strength of about 133 V/cm. The charged tracks ionize the P10 gas,

and the electrons from ionization drift under the influence of the electric field

towards both ends of the TPC. The drifting is a slow process, with a typical

drifting velocity of 5.45 cm/µs, translating into a maximum of about 40 µs total

drifting time.

At both ends of the TPC, there are readout systems based on Multi-Wire

Proportional Chambers (MWPC) with readout pads. The system is composed of
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Figure 2.3: An illustration of the STAR TPC. Taken from [77]. The STAR TPC
is 4.2 meters in length, along the beamline, and 4.0 meters in diameter, with IFC
at radius=50 cm and OFC at radius=200 cm.
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three layers of wires and one final (farthest from TPC center) layer of readout

pads. The drifting electrons will first encounter the gate wire grid, which allows

the drifting electrons to come through while an event is being recorded and blocks

charged particles from entering the MWPC area at the rest of the time. This

gate grid is also the boundary of the electric field in TPC. The next layer is

a ground grid shielding the electric field inside the MWPC regime. The drifting

electrons are accelerated near the third layer, the Anode grid of wires, and produce

avalanches. The large amount of positive ions produced in the avalanche induce

an image on the readout pads. The readout pads are arranged in concentrical rows

in 12 super sectors along the φ direction, and each super sector is composed of

one inner sector and one outer sector. The pad size is determined by the required

two hit resolution for track separation. The size of induced charge distribution on

the pad plane depends on electron diffusion in the gas and the separation distance

between the anode and the pad plane. The inner readout pads are optimized to

deal with the highest track density, so they are smaller in size and require a large

amount of front end electronics. Therefore the rows of inner pads are separated

from each other with space in between. The outer readout pads are optimized to

measure the track energy loss by collecting more electrons, so they are bigger in

size and the rows are contiguous, as shown in Figure 2.4.

The distance between the anode wire grid and the readouts are adjusted sep-

arately for the inner and outer sectors, 2 mm and 4 mm respectively, so that the

induced image is always about 3-pads wide and the transverse position is mea-

sured especially by looking at the charge distributions on the two pads on the

sides. The longitudinal position is measured by the drifting time (time difference

between collision start and pad readout) times the drift velocity. The drift veloc-

ity is known to 0.1% due to two factors. Firstly, the operation voltage of P10 gas

makes the drifting velocity stay in a stable and flat plateau of the drift velocity

curve. Secondly, the STAR TPC has a laser calibration system to measure the
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Figure 2.4: The readout pads for the MWPC for the STAR TPC. Figure taken
from [77]. This is the final (farthest from the center) layer of the MWPC.

drift velocity [85]. The track hit position resolution in both direction can reach

1 mm or less. The primary vertex resolution in the transverse plane depends on

the charged particle multiplicity and is found to be 350 µm for more than 1000

tracks [77].

2.2.3 Barrel ElectroMagnetic Calorimeter and Barrel Shower Maxi-

mum Detector

Covering pseudo-rapidity range −1 ≤ η ≤ 1 and 2π, the STAR Barrel Elec-

troMagnetic Calorimeter (BEMC) is in a cylindrical shape with an inner radius

of 223.5 cm and an outer radius of 263 cm. It has 120 modules each covering

∆η = 1 and ∆φ = 6◦ or ∼ 0.1rad (in other words, there are 60 BEMC modules

surrounding each half of TPC, with their long sides parallel to each other and

to the beam pipe). As shown in Figure 2.5, each BEMC module is a stack of 21

layers of plastic scintillators with 20 layers of lead sandwiched in between, forming
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a total depth of approximately twenty radiation lengths (20X0) at mid-rapidity.

Each BEMC module is segmented into 40 towers each with size ∆η = 0.05 and

∆φ = 0.05 rad, i.e. an array of 2(along φ direction)×20(along η direction) tow-

ers. For each tower, one PMT is used to read out the sum of light outputs from

the 21 layers of plastic scintillators. The energy resolution is expected to be

δE/E ∼ 14%
√

E/1 GeV
⊕

1.5% [80].

The STAR Barrel Shower Maximum Detector (BSMD) is located inside the

BEMC between the 5th layer of lead and 6th layer of scintillator, at a depth of ap-

proximately 5X0. Each BSMD module is a wire proportional counter sandwiched

by two layers of strip readout, shown in Figure 2.6. Since each BSMD module is

inside a BEMC module, there are also 120 BSMD modules. There are 150 strips

on each of the two planes of one BSMD module. On the front plane of BSMD,

i.e. the layer closer to the interaction region, these strips are arranged in a line

along η, each with a size of ∆η = 0.0064 (1/150 = 0.0067 and this translates to

∼ 1.5 cm at low η) and ∆φ = 0.1 rad (∼ 23 cm). The main purpose of this plane

is to map out the shower profile along η with a very fine resolution, and thus it is

referred to as BSMD-η. The other 150 strips on the back plane of BSMD are ar-

ranged as a 15(φ)×10(η) array. The granularity is ∆φ = 0.1/15 = 0.00667 rad and

∆η = 1/10 = 0.1 rad. The very fine granularity along φ provides a fine measure-

ment of shower profile along the φ direction and this is the BSMD-φ plane. High

spatial resolution (ση = 2.4mm + 5.6mm/
√
E and σφ = 3.2mm + 5.8mm/

√
E)

shower profiles can be obtained by combining BSMD planes [80].

2.2.4 Heavy Flavor Tracker

The STAR experiment is upgrading with a group of inner tracking detectors,

collectively refereed to as the Heavy Flavor Tracker (HFT), which will be essen-

tial for heavy flavor studies in the future. The HFT is designed to facilitate the

reconstruction of the displaced decay vertices of heavy flavor decays with a point-
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Figure 2.5: A side(end) view of a BEMC module in the upper(lower) plot. Figure
taken from [80]
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Figure 2.6: A illustration of the STAR BSMD. Figure taken from [80]

ing resolution of the order of 50 µm, so that charm and bottom hadrons can be

topologically separated [86]. HFT consists of three sub-detectors at four differ-

ent radius layers, as shown in Figure 2.7. Starting from the innermost, there are

two layers of silicon pixel detector (PXL) at 2.5 and 8 cm radii, the Intermediate

Silicon Tracker (IST) at 14 cm, and the Silicon Strip Detector(SSD) at 22 cm.

The pointing resolution gradually increases from the outermost tracking detector

towards the inner trackers, starting with about 1 mm for TPC pointing at the

SSD and is expected to reach about 40 µm with the most inner layer PXL point-

ing at the displaced vertex. To reach such a good resolution, the Complementary

Metal Oxide Semiconductor (CMOS) Active Pixel Sensor (APS) technology is

used for the PXL, which will be a pioneering work in collider experiments [86].

An engineering run for HFT is planned for Run13 and HFT is expected to be

fully completed in Run14.
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Figure 2.7: The design of the STAR HFT. Figure taken from [86]
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CHAPTER 3

Analysis of Non-Photonic Electron spectrum

In this chapter, we will present the analysis of non-photonic electron (NPE) spec-

trum in Au+Au collisions at
√
s

NN
= 200 GeV based on data taken during RHIC

Run10 in 2010. The measurement of NPE spectrum in p+p collisions has been

updated in a recent STAR paper [73]. Combining these two analyses, we will then

calculate the nuclear modification factor RAA for NPE. Most of the analysis proce-

dures discussed here also apply to the NPE azimuthal anisotropy and correlation

studies in the next chapter.

3.1 Overview of analysis procedures

The NPE analyses are essentially electron identification procedures plus statistical

background subtractions. We firstly apply track quality and electron identification

criteria to all reconstructed tracks to select a group of well reconstructed tracks

with high electron purity, which is labeled as inclusive electrons. Within the

inclusive electrons, the signal electrons are those from the semi-leptonic decays

of open heavy flavor hadrons (e.g. D → Keνe and B → Deνe). The main

background is photonic electrons from photon conversions in the detector material

and Dalitz decays of π0 mesons. Therefore, the signal electrons are also called

non-photonic electrons.

To handle the photonic electrons, every inclusive electron in each event is

paired with oppositely charged partner electrons in the same event to reconstruct
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their parent particles. The track quality and PID criteria for the partner track

are not as rigid as those for the electron candidate in order to ensure high pho-

tonic background reconstruction efficiency. The combinatorial background can be

accounted for by randomly pairing up electrons with the same charge. We then

examine the properties of the electron pairs, such as the invariant masses of the

reconstructed parents and the opening angles between the paired electrons, and

we select photonic electron candidates based on these properties. Note that we

do not tag every photonic electron in Au+Au collisions, and that the sample of

opposite-sign (OS) pairs minus same-sign (SS) pairs is statistically a good repre-

sentation of photonic electrons. This sample of OS minus SS pairs can be used

to accurately extract not only the number but also the properties of photonic

electrons, mostly just universal electron properties regardless of the origins of the

electrons.

Additional electron sources, such as heavy quarkonia decays (J/ψ → e− + e+,

Υ → e− + e+), Drell-Yan processes (q + q̄ → e− + e+), Ke3 decays (K → πeνe),

and light meson decays, also contribute to the inclusive electron sample, but at

much lower levels.

3.2 Data sets

3.2.1 Triggers

In Run 2010, with a newly upgraded Data Acquisition (DAQ) system capable of

handling event rates up to 1000 Hz (DAQ1000), the STAR detector collected about

830 Million Au+Au collisions with different trigger setups, including about 365

Million minimum bias (MinBias) Trigger events, about 255 Million Central Trig-

ger events, and about 160 Million High Tower Trigger events, in an approximately

80-day period (Day 02 to Day 80). The MinBias trigger has been set up as the

coincidence between the Vertex Position Detector (VPD) [78] and the Zero Degree
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Calorimeter Detectors (ZDC) [84], aiming at triggering on most of the Au+Au col-

lisions; the Central trigger selects the most central events (approximately 0∼10%

centrality), by looking at ZDC and Time-of-Flight detector (TOF) signals; the

High Tower triggers require at least one Barrel Electro-Magnetic Calorimeter

(BEMC) tower passing a certain transverse energy threshold, selecting events

with higher probability of having high pT electrons than the MinBias events. In

Run 2010, four different transverse energy thresholds were used for the study of

NPE, providing four sets of High Tower triggers, NPE11, NPE15, NPE18, and

NPE25, with the numbers indicating the actual thresholds applied to the Analog

Digital Converters (ADC) readouts of the BEMC. The event rates for most trig-

gers (MinBias, Central, NPE11, NPE15) are too large to record every event on

tape, so only a certain fraction of such events are recorded, which is defined by

the pre-scale factor of the trigger. Namely, one out of every pre-scale number of

events is recorded.

3.2.2 Run selection

In the operation of the STAR detector, we often collect Au+Au events in groups

of, say, half of a million, and we label them as one run. After each run, the DAQ

system was stopped and then re-started to take the next run of data. Approxi-

mately 2400 runs were recorded for Run10 Au+Au collisions.

To reject bad runs, we firstly apply the STAR standard bad-run-list [87], which

rejects:

• runs with charged track reference-multiplicity three Root-Mean-Square (RMS)

away from the average over the entire Run10 Au+Au collisions,

• runs with no BEMC detector information,

• runs with 4 or more bad TPC Readout boards (RDO),
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• runs with too few (less than one thousand) good MinBias events,

• runs with significant shift of primary vertex position and mean track pT .

In Appendix A we list all the bad runs rejected in this STAR standard procedure.

Secondly, we apply additional criteria to ensure better data quality. To ensure

a uniform BEMC working condition over the whole Au+Au running period, we

compare the number of high tower events in the NPE11 trigger with that of

MinBias events. As shown in Figure 3.1, in the first 8 days of Run10, the ratio

of number of events in NPE11 over number of events in MinBias is found to

be higher than average, so all of those runs (covering run ID=11002000 to run

ID=11009999) are rejected, along with some other outlier runs. We also require

the collision positions in each run is consistent with the average, as we shall discuss

later. In addition, very large pre-scale factors for the MinBias trigger were used

during Day 55 to Day 65 and Day 75 to Day 80 to let some other triggers record

more events. As a result, the recorded MinBias events during these days are much

fewer than usual, with only about 4 million good MinBias events in total for these

15 days. These 15 days of MinBias data are skipped in the analyses, but the

events of other triggers during these days are kept.

3.2.3 Event selection and centrality determination

For event selection, the only criteria for good quality we apply are on the primary

collision vertex position. We require that the reconstructed vertex position based

on reconstructed TPC tracks is no more than 30 cm away from the center of the

STAR detector along the beam direction (the Z direction) and no more than 2 cm

away along the radial direction, i.e. |VZ| < 30 cm,
√

V 2
X + V 2

Y < 2 cm where the

center of the STAR detector is defined at X=0 Y=0 and Z=0. In addition, we

require the reconstructed vertex based on TPC tracks and reconstructed vertex

based on the Vertex Position Detector (VPD) to be consistent within 3 cm along
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Figure 3.1: The number of actually occurred events in NPE11 trigger divided
by that in MinBias trigger in each run. The horizontal lines indicate the range
regarded as good runs, which is from 0.16 to 0.19. The outliers and run 1100200
to run 11009999 are rejected.

the Z direction, i.e. |V TPC
Z − V V PD

Z | < 3 cm. Figure 3.2 shows the distributions

of reconstructed vertex positions based on TPC tracks and the difference between

TPC vertex and VPD vertex. The efficiency of the |VZ| < 30 cm cut is usually

80 ∼ 85%, while the efficiency of the second cut is above 95%, and total efficiency

is shown in Figure 3.3. To ensure a stable efficiency, we also reject those runs

with abnormal efficiencies outside a 10% band. These requirements on the ver-

tex positions correspond to those used in the STAR standard determination of

event centrality. It is worth mentioning that the VZ distributions depend on the

centrality, and therefore the efficiencies of VZ cuts also depend on centrality, as

shown in Figure 3.4. The emphasis is that, in the calculation of number of events

to be discussed below, efficiencies need to be applied centrality-by-centrality and

run-by-run. After all the run selections and event selections, there are about

250 Million MinBias events and roughly 100 Million High Tower events left. The

NPE18 trigger is only used for the elliptic flow and NPE-hadron correlation anal-

yses in the next chapter. NPE25 trigger has too few events (a few Million), so it

is not used at all. There are about 200 Million Central trigger events passing the

run and event selection, 84 Million of which are the most central (0 to 5%) events
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and are used in this analysis.
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Figure 3.2: Left plot: Distribution of vertex position based on TPC tracks along
the beam direction. Right plot: the difference between the TPC vertex and VPD
vertex.
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Figure 3.3: The efficiency of |VZ| < 30 cm and |V TPC
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Z | < 3 cm in each
run. The horizontal lines indicate the ±10% range around the average, which
defines the good runs. The outliers are rejected

The event centrality in this analysis is obtained with standard STAR cen-

trality determination software, which classifies Au+Au events based on the (cor-

rected) reference multiplicity. The reference multiplicity (RefMult) is the number

of charged tracks at the center region inside TPC (|η| < 0.5). Because the west

and east halves of TPC do not necessarily have the same efficiency, a TPC bias

depending on the primary vertex position Z could occur. Also, there is a trigger

bias even in the MinBias trigger, whose efficiency for very peripheral collisions is
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lower. In addition, the pileup events, which depend on the luminosity, could mod-

ify the RefMult, although the pileup events are expected to be less important in

Au+Au collision. Therefore, the STAR centrality determination software corrects

the raw reference multiplicity in each event based on VertexZ positions and the

event rates monitored by the ZDC.

Glauber model [43] Monte Carlo simulations of event RefMult are carried out

by STAR, systematically scanning through all possible impact parameters, and

are compared to the corrected RefMult distribution in MinBias events. RefMult

ranges, each responding to 5% of the total cross section of Au+Au collisions in the

Glauber simulations, are determined via the comparison [87]. In the meantime, the

MinBias trigger inefficiency in data, considerable only in very peripheral collisions,

is also determined from data-Glauber comparisons for each RefMult value. A

weight to correct the inefficiency is assigned for each RefMult value, so that the

data RefMult distribution is forced to match that in Glauber. The correction

needed is less than 10% until very peripheral and the most peripheral events

(approximately 10% geometrical cross section with biggest impact parameter)

cannot be corrected reliably. This event by event re-weighting procedure only

applies to events satisfying the aforementioned collision vertex position selections

and after the re-weighting, the centrality bin 0 ∼ 10% and 10 ∼ 20% each counts

for about 12% of all the final events, while the centrality bin 20 ∼ 40% and

40 ∼ 60% each counts for about 24%.

By definition, the number of events in MinBias trigger in the analysis is sim-

ply the number of events passing the vertex and centrality selections after the

re-weighting. It is however more complicated for High Tower triggered events.

During the data taking, the ratio of number of truly occurred (i.e. no matter

whether the event is recorded on tape or not) High Tower events versus num-

ber of truly occurred MinBias events in each run was recorded. We apply this

run-by-run ratio to convert the total number of High Tower events in each run
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into equivalent total number of MinBias events (NMB−equiv
HT ) in each run before

any cuts. Then, the vertex and centrality selections efficiency calculated from the

MinBias trigger is multiplied to NMB−equiv
HT to obtain the equivalent number of

MinBias events used in the analysis (i.e. after the cuts) for High Tower triggers.

In short, even for High Tower events, what matters is the equivalent number of

MinBias events and the selection efficiency based on MinBias events. The effi-

ciency also depends on the centrality, as discussed above.

3.3 Track quality cuts

Although heavy quarks decay through the weak interaction, their life-times are

usually relatively short, due to large heavy quark masses and large phase space

available in the decays. The cτ of heavy flavor hadrons are on the order of 100

µm, much smaller than the tracking pointing resolution at STAR. As a result, the

electron daughters of heavy flavor hadrons cannot be distinguished from the real

primary particles, i.e. those coming from the primary vertices where the collisions

occur. We only accept inclusive electron candidates from the primary vertices by

requiring their distance-of-closest-approach (DCA) to the primary vertices being

less than 1.5 cm. To ensure there are no badly reconstructed tracks nor track

splitting, we require that each track should have at least 20 TPC hits used in

track fitting/reconstruction (nHitsFit) but no more than 50, and nHitsFit should

be at least over 52% of the maximum number of TPC hits possible. To ensure

a good measurement of track energy loss in TPC, a minimum of 15 TPC hits

has been used in the track energy loss calculation (nHitsDedx). For the partner

electron candidates that will be used to for photonic electron reconstruction, we

relax the requirements so that the minimum of nHitsFit is 15 and the minimum of

nHitsDedx is 10. We require the partner electrons to be within a pseudo-rapidity

range of −1.3 < η < 1.3 to have good tracking qualities, although the TPC covers
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a large range. The pseudo-rapidity cut on the inclusive electron candidates is even

tighter due to BEMC constrains and will be discussed later.

A critical advantage of recent data taken by STAR over the previous years

is that the inner detectors, SVT and SSD, have been removed before the year

2008, resulting in a much lower detector material budget and much lower pho-

tonic electron background since 2008. However, the support structures have not

been removed, and they cause a non-uniformity in the material budget distri-

bution in the azimuthal angle. Therefore, in our analysis we avoid the support

structures by rejecting certain azimuthal ranges, i.e. all electron candidates with

−1.84 < φ < −1.2 and 1.36 < φ < 2.2 are rejected. To further reject

photonic electrons, we require the first TPC hit of each inclusive electron to be at

a radius less than 73 cm from the center of TPC, before the fourth row of readout

pads in the TPC inner sectors. It rejects the photon conversions in the TPC gas

between radius 73 cm to 200 cm. As we discussed in chapter two, the TPC gas

has a total thickness of 150 cm and has a 1.17%X0 material budget, and this cut

rejects approximately (1− 23/150)× 1.17%X0 ∼ 1%X0 material budget. 1%X0

is a significant amount considering the total material from the Inner Field Cage

(IFC) to beam pipe is only ∼ 1.1%X0 (IFC plus insulating gas is ∼ 0.65%X0 [80]

and the beam pipe and the wrap is ∼ 0.43%X0 [73]). In addition, this cut ensures

that the tracks travel a long path in TPC, therefore enhancing the probability for

the tracks to be correctly reconstructed.

3.4 Electron identification

High pT electrons can be effectively distinguished from hadrons by the electro-

magnetic calorimeter, due to the fact that almost all electrons deposit all of their

energy in the calorimeter whereas hadrons deposit much less. To make sure that

we understand the calorimeter responses well, we restrict the electrons to be within
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−0.7 < η < 0.7, where the BEMC is well calibrated. We start electron identifi-

cation by requiring certain energy thresholds to be met by the calorimeter, either

already in the online triggers (e.g. in High Tower triggers, transverse energy

thresholds applied on single tower) or in the analysis procedure (e.g. in MinBias

and Central triggers, with much lower energy threshold than those used in High

Tower triggers).

3.4.1 BEMC point reconstruction and track matching

Once a BEMC tower is identified with transverse energy (ET ) larger than a certain

energy threshold (100MeV to begin with), we begin to gather more information

around the tower to reconstruct the complete BEMC and BSMD responses to the

triggering electromagnetic shower. The adjacent BEMC towers and BSMD strips

are examined to form BEMC and BMSD clusters. Finally, BEMC and BMSD

clusters from the same shower origin are associated together to form a BEMC

point. The UCLA BEMC point reconstruction software and its advantages over

other STAR software are discussed in detail in [88] and we will present a short

summary here.

• In our analysis, one electromagnetic shower is represented by one BEMC

point.

• In the chain of data analysis, the UCLA BEMC point reconstruction soft-

ware is used after the standard STAR library codes finish analyzing the basic

information from an event and return a complete collection of status and

energy of each single tower/strip in the BEMC/BSMD for this event.

• The software begins with BEMC clustering. BEMC towers with energies

higher than 0.1 GeV are identified as “seeds”. Surrounding a “seed”, towers

with energies above a lower threshold are added to the “seed” to form clus-

ters. The BSMD clustering procedure is very similar but with lower energy
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thresholds, since BSMD is a wire proportional counter. A cluster, in either

BEMC or BSMD, is always confined to within one BEMC/BSMD module

i.e. no cross-module clustering, and therefore the BEMC point reconstruc-

tion software works on each individual module one by one.

• If no cluster can be formed for the BEMC, the software stops with no point

found and moves onto the next module. Once a BEMC cluster is found,

the software begins to reconstruct BSMD clusters particularly associated

with this BEMC cluster. As a result, only those strips adjacent to this

BEMC cluster are used to reconstruct the corresponding BSMD clusters.

However, as long as there is a BEMC cluster, a BEMC point will always be

reconstructed, no matter if, or how many BSMD clusters are found.

• If one of the two BSMD planes does not have any clusters whereas the other

plane has, this plane will be analyzed again with the strip energy thresholds

lowered. If there is more than one cluster on either BSMD plane, the clusters

are also examined again and merged if certain criteria are met. This is

necessary because the original criterion for BSMD clusters is rather strict.

For example, there must be no “valley” in the strip energy profile, i.e. the

further from the seed strip, the lower energy. However, this requirement is

relaxed in the merging process of clusters.

• If there are still more than one cluster in either BSMD plane, the software

will reconstruct more than one BEMC point, with the BEMC cluster energy

shared among these points in a fashion that matches the energy distribution

pattern of the BSMD clusters. This is based on the fact that the BSMD has

much better spatial resolution and it is possible to distinguish two showers

very close to each other. In this case, the software will sort the clusters on

the BSMD-η and φ planes with both energy difference and η distance taken

into consideration, and then associate them with each other properly. The
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total energy of a BEMC point is solely from the BEMC cluster.

After all the BEMC points in one event are reconstructed, only those with all

three planes, BEMC, BSMD-η and φ are used in Track-Point association. In this

high pT electron analysis, only TPC tracks with pT > 1.5 GeV/c are used. The

TPC track trajectories are modeled by helices in a magnetic field and projected

onto the BSMD η and φ planes for η and φ positions respectively. These projected

η and φ positions are compared with BEMC point η and φ positions, and the

matching criterion is satisfied if the distance between the projected track and

the BEMC point is smaller than 0.05 rad, i.e. d =
√

∆η2 + ∆φ2 < 0.05. If

there is more than one BEMC point close enough to the track, the closet point

is associated with the track. See Figures 3.5, 3.6 and 3.7 for the distributions of

the distance between a TPC track projection at the BSMD and the BEMC point

associated with this track. In each figure, one plot is based on all the associated

pairs of high pT TPC tracks and BEMC points, and the other plot is based on a

sample with enhanced electrons. The ∆Z distributions are separately drawn for

positive and negative η sides, because there are different global offsets, likely due

to a lack of accurate understanding of BEMC/BSMD geometry at the η = 0 ends.

This can be inferred from the sudden jump of ∆Z at η = 0 in Figure 3.8. These

offsets are small and do not impose any difficulties as long as we treat the two

sides separately.

Two Gaussians are used in the fits shown in the Figures, the blue one repre-

senting electrons and the red one for non-electron contributions. The sum of the

two Gaussians is in green, and the two magenta dotted vertical lines on each plot

indicate the 3σ range around the center of the electron Gaussian. Based on the

obtained fitting parameters, the association distance resolutions for electrons are

determined to be consistent with the reported BSMD resolution [80]. In this anal-

ysis, additional cuts on the association distances are applied to reject non-electron

contributions. The cuts are tighter than the d =
√

∆η2 + ∆φ2 < 0.05 cut used
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Figure 3.5: Left plot: Distribution of ∆φ between associated pairs of TPC tracks
and BEMC points. Right plot: Same distribution for an electron enhanced sample,
where other electron identification cuts are applied.
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in the initial association, but they still allow at least 99.7% of the electrons (3σ

range around the center of a Gaussian distribution) to be included. The specific

cuts (−0.013 < ∆φ < 0.013, -2.5 cm < ∆Z < 1.1 cm for positive η and

−1.5 cm < ∆Z < 1.9 cm for negative η) are obtained based on the fitting

parameters from the electron enhanced sample, but they are also checked against

all the associated track-point pairs and against photonic electrons. The cut effi-

ciencies are found to be always above 99.5% no matter what sets of parameters

are used in the calculation. The overall efficiency of electrons matching BEMC

points are complicated, involving many factors such as geometrical acceptance

and detector unit performance, and we rely on simulations to study it. Only on

the order of 1% of all the hadrons are associated with BEMC points.

In the High Tower triggered events, we further require the highest single-tower

transverse energy in every accepted BEMC point to be larger than the equivalent

High Tower trigger thresholds. During the data taking, the High Tower trigger

thresholds (11, 15, 18 and 25) were applied to the Analog to Digital Converter

(ADC) channels of the Photomultiplier Tubes (PMT) for BEMC towers and they

are translated into tower transverse energy thresholds (2.64, 3.6, 4.3 and 5.98

GeV).

3.4.2 E/P and Number of BSMD strips

The electromagnetic showers of electrons are caused mostly by electron bremsstrahlung

in the electromagnetic calorimeter and the emitted photons converting into pairs

of electron and position, which emit more photons and so on. Electrons and

photons deposit all of their energies in the electromagnetic calorimeter, whereas

hadrons do not lose as much energy. Since the momentum of a relativistic electron

equals to its energy, electrons should have E/p ∼ 1, whereas hadrons do not, as

shown in Figure 3.9. Therefore, we use 0.5 < E/p < 1.7 to reject hadrons. The

electromagnetic shower of electrons develops much broader at the depth where
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the SMD is located (∼ 5X0). We require that the shower profiles of electron can-

didates must be at least two-strip wide on both BSMD φ and η planes, i.e. firing

at least two strips in both planes. In Figure 3.10, we compare BSMD showers for

electrons and hadrons and the hadron showers are normally much smaller.
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ηNSMD 
0 1 2 3 4 5 6

φ
N

S
M

D
 

0

1

2

3

4

5

6

0

200

400

600

800

1000

SMD hits of photonic electrons

ηNSMD 
0 1 2 3 4 5 6

φ
N

S
M

D
 

0

1

2

3

4

5

6

0

20

40

60

80

100

610×
SMD hits of hadrons

Figure 3.10: Left(Right) plot: Distribution of number of BSMD strips on the η
and φ planes for photonic electrons (hadrons, which are identified by their energy
loss in TPC) in MinBias events.

Since both energy measured by the calorimeter and 1/p measured by the TPC

have Gaussian-like resolutions, the E/p distribution would be a Gaussian if there

are no other effects. However, effects such as electron bremsstrahlung in the TPC,

random tracks (e.g. π0) hitting the same BEMC points coincidently with electrons

and even the energy threshold cut on single-tower, distort the equality between

61



electron energy and momentum. These effects are slightly different for different

pT and centrality, but the differences are found to be very small. In Figure 3.9,

the E/p distribution for photonic electrons is fitted with a Gaussian plus a second

order polynomial. The width of this Gaussian is found to be about 17%, and

it corresponds to the combination of track momentum resolution from TPC and

energy resolution from BEMC. The efficiency of the E/p cut (0.5 < E/p < 1.7)

is estimated to be above 99%. In MinBias events about 60% of the hadrons are

rejected by this cut.

In contrast to E/p, number of BSMD strips has a strong dependence on pT ,

since the size of electromagnetic showers depends on the energy deposited in the

calorimeter. As a result, the distributions of the number of BSMD strips are

different in MinBias and High Tower events, since the average pT in MiniBias

events is smaller than that in High Tower events. Based on photonic electrons,

the total efficiency is estimated to be 86% (94%), with the individual plane cut

efficiency around 92∼93% (96∼97%, in MinBias (High Tower) events. We show

the distribution of the number of strips for each BSMD plane for photonic electrons

in Figure 3.11. About 80% of the hadrons are rejected by these cuts in MinBias

events.

In summary, combined requirements of BEMC matching, close-to-unity E/p

and wide shower profiles, can achieve a hadron suppression factor on the order of

1000 at high pT , while maintaining a reasonable electron efficiency. We do not

apply any BEMC or BSMD related cuts to partner electrons.

In Table 3.1, we summarize all the electron identification cuts applied so far,

except the nσe cuts. The cuts listed here do not change with pT , whereas the nσe

cuts will change.
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Table 3.1: The electron identification cuts, except the nσe cuts
Variable Cut

Pseudo-rapidty η ∈ (-0.7, 0.7)

Azimuthal angle φ /∈ (-1.84, -1.2)∨(1.34, 2.2)

Radius of first TPC hit < 73 cm

Global DCA < 1.5 cm

Number of TPC hits ∈ [20, 50)

Number of TPC hits/Maximum hits possible ∈ (0.52,1.02)

Number of TPC hits used for energy loss ∈ [15,100)

Track-point association distance d =
√

∆η2 + ∆φ2 < 0.05

Track-point association φ distance ∆φ ∈ (-0.013, 0.013)

Track-point association Z distance ∆Z ∈ (-2.5 cm, 1.1 cm) η > 0
∈ (-1.5 cm, 1.9 cm) η < 0

BEMC point energy over track momentum E/p ∈ (0.5, 1.7)

Number of BSMD η and φ strips at least 2 for both planes
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Figure 3.11: Left(Right) plot: Distribution of number of BSMD strips on the η(φ)
plane for photonic electrons in Mini-Bias events.

3.4.3 TPC ionization energy loss nσe

In chapter two, we discussed track ionization energy loss in TPC. The STAR

TPC measures track energy loss per unit distance dE/dx. Since charged particle

ionization processes have been extensively studied for a long time, the theoret-

ical calculations, e.g. Bichsel function [89], are rather accurate. The difference

between the measured and calculated energy loss are divided by the TPC en-

ergy loss resolution, and thus converted into normalized ionization energy loss,

nσ, for each particle species, usually including π±, k±, protons, and electrons. In

particular, for electrons, we have nσe according to Equation 3.4.1.

nσe =
log[(dE/dx)/Be]

σe
(3.4.1)

where Be is from the Bichsel function prediction for electrons [73, 89].

After imposing the electron identification criteria discussed above, we examine

the nσe distribution of the electron candidates in pT bins of 1 GeV each. We

show some examples in Figure 3.12. At high pT , electron energy loss is stable and

has a very weak dependence on pT , whereas the hadrons just pass the Minimum

Ionization Position (MIP) and the hadron energy loss rises quickly with pT and
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approaches the electron energy loss. As a result, the hadron peaks are closer to the

electron peak at higher pT and we tighten the electron selection cuts at higher pT

to ensure a high purity. For example, we require electrons to have nσe > −0.75

at 2 < pT < 3 GeV/c and nσe > −0.25 at 4 < pT < 5 GeV/c. We fit the

nσe distributions with multiple-Gaussian functions, based on which we calculate

the efficiency of the nσe cuts and the contamination from hadrons in the accepted

electron candidates. The hadron contamination is always less than 20% and much

lower at low pT . Due to the fact that the calorimeter enhances the probability of

finding electrons, the nσe distributions are different in High Tower and in MinBias,

with the electron peak in High Tower trigger being much more prominent, also

shown in Figure 3.12. As a result, although the efficiency of the nσe cut is the

same in High Tower and in MinBias, the hadrons contamination and the purity

of selected electrons are different. Table 3.2 summarizes the efficiency and purity

as a function of electron pT .

We emphasize here two points for electron identification procedure. 1) in order

to guide good fits to the nσe distributions, we first study the nσe distributions

of photonic electrons, obtaining the mean and width of these distributions. We

then fix the electron nσe Gaussian parameters to be those obtained from photonic

electrons. We assume there is no pT dependence but consider the centrality de-

pendence. Figure 3.13 shows the nσe distributions of photonic electrons, along

with the Gaussian mean and width obtained via fitting. 2) the nσe selection is the

last electron identification method to be applied. The selected particles are the

inclusive electrons and the hadrons leaking into this selection is regarded as irre-

ducible contamination, and the number of pure electrons is naturally the electron

purity times the number of inclusive electrons.
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Figure 3.12: Figures 3.12(a) to 3.12(c): Distributions of nσe of electron candidates
in 0% to 10% central events in the MinBias Trigger. Three Gaussians are used to
fit the distribution, one for electrons, one for π± and the last one for the merged
peaks of K± and p±. In the top left plot, there is a fourth peak at the high
nσe end of the distribution due to merged π± tracks, which is approximated by
a Gaussian here. Figures 3.12(d): same as Figure 3.12(b) except this is for High
Tower Trigger.
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Table 3.2: The efficiency of nσe and the electron purity in the inclusive electrons
as a function of electron pT in different centrality. MB means MinBias triggered
events, and NPE15 means High Tower NPE15 trigger. The values for NPE11 are
only slightly different. N/A means cannot be fitted well.
pT (GeV/c) 2-3 3-4 4-5 5-6 6-8 8-10

selected range (-0.75, 2) (-0.75, 2) (-0.25, 2) (-0.25, 2) (0.25, 2) (0.5, 2)
MB

0 ∼ 10%
efficiency 0.74 0.74 0.53 N/A N/A N/A
purity 0.94 0.86 0.93 N/A N/A N/A
MB

10 ∼ 20%
efficiency 0.78 0.78 0.58 N/A N/A N/A
purity 0.95 0.88 0.92 N/A N/A N/A
MB

20 ∼ 40%
efficiency 0.80 0.80 0.61 N/A N/A N/A
purity 0.97 0.91 0.96 N/A N/A N/A
MB

40 ∼ 60%
efficiency 0.82 0.81 0.63 N/A N/A N/A
purity 0.98 0.94 0.91 N/A N/A N/A
NPE15
0 ∼ 10%
efficiency 0.75 0.75 0.55 0.55 0.34 0.24
purity 0.98 0.99 0.99 0.97 0.98 0.94
NPE15

10 ∼ 20%
efficiency 0.78 0.78 0.59 0.59 0.36 0.26
purity 0.99 0.99 0.99 0.94 0.97 0.95
NPE15

20 ∼ 40%
efficiency 0.80 0.80 0.62 0.62 0.39 0.29
purity 0.99 0.99 0.99 0.98 0.98 0.93
NPE15

40 ∼ 60%
efficiency 0.82 0.82 0.64 0.64 0.41 0.30
purity 1.00 1.00 0.99 0.98 0.98 0.92
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Figure 3.13: nσe distributions of photonic electrons in different centrality. The
parameters obtained here are used to constrain the fits to inclusive electrons nσe

distributions.
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3.5 Photonic electron reconstruction

After all the track quality cuts and electron identification cuts are applied, the

remaining sample is the inclusive electrons. As discussed above, the main back-

ground within the pure electrons are the so called photonic electrons from photon

conversions (Equation 3.5.2) and π0 Dalitz decays (Equation 3.5.3). The photons

come not only directly from the Quark-Gluon Plasma (QGP) but also from par-

ticle decays, mainly π0 mesons.

γ → e+ + e− (3.5.2)

π0 → e+ + e− + γ (1.174 ± 0.035)% (3.5.3)

We try to reconstruct the parent γ and the Dalitz e+e− pair by pairing inclu-

sive electrons with partner electrons in the same event. The partner electrons have

looser track quality cuts, as discussed above, and they are not required to come

from the collision vertices, since photon conversions only happen in detector ma-

terials, the majority of which are some distance away from collision vertices. The

partner electrons are required to have a TPC energy loss within −3 < nσe < 3.

We use helices to model the electron bending in the magnetic field. The pT of

partner electrons are required to be above 0.3 GeV/c to ensure a good modeling

with helices. The cuts to select partner electrons are listed in Table 3.3.

Every track in the inclusive electron sample is paired with all the qualified

electrons in the same event, including both oppositely charged (forming opposite-

sign pairs, i.e electron-positron pairs) and same charged (forming same-sign pairs,

i.e electron-electron and positron-positron pairs). The electron and positron in

an opposite-sign pair could be either truly correlated, i.e come from the same

parent, or not correlated at all but as a result of the random pairing process.
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Table 3.3: The partner electron identification cuts
Variable Cut

Number of TPC hits ≥ 15

Number of TPC hits used for energy loss ≥ 10

Pseudo-rapidty η ∈(-1.3, 1.3)

Transverse momentum pT >0.3 GeV/c

Normalized energy loss nσe ∈(-3, 3)

The latter contribution, referred to as the combinatorial background, can be well

estimated by the same-sign pairs. This is because the correlation between same-

charged electrons are expected to be extremely small, if any, coming from some

very rare decays. As a result, the possibility of an electron being paired with an

uncorrelated positron should be, on average, the same as the possibility of it being

paired with another electron. Therefore, the opposite-sign (OS) pairs subtracting

the same-sign (SS) pairs represents the amount of photonic electrons.

Although the combinatorial background can be well estimated on average,

it could be very significant if no constraints were applied, and the statistical

uncertainty would be overwhelming. We examine the properties of each OS and

SS pair to decide whether the paired electrons are likely to come from a common

parent or not. The properties to be examined are pair opening angles, pair distance

and parent mass. The cuts on the pairs are exactly the same for OS and SS, so

that the good estimation of the combinatorial background will not be affected.

Firstly, the opening angles between the paired tracks are examined, as shown

in Figure 3.14. The random combinations, represented by the same-sign pairs,
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increase rapidly with growing opening angle. We cut the opening angle at 0.1 rad

where the photonic electron distribution (OS-SS) approaches zero. Furthermore,

we examine the opening angles in both φ plane (η = 0) and θ plane (φ = 0), shown

in Figure 3.15. Similarly, we always cut those angles where photonic electron

distributions approach zero, 0.1 and 0.05 rad for φ plane and θ plane, respectively.

These cuts reject a large number of random combinations.

Figure 3.14: The opening angle between two paired tracks. The photonic elec-
trons are the opposite-sign pairs subtract same-sign pairs. No other pair cuts are
applied.

Secondly, if the paired tracks are truly from a common parent, the measured

distance-of-closest-approach (DCA) between them should be very small, being

non-zero only due to detector resolution. We require the DCA less than 1cm, and

this cut accepts the majority of the photonic electrons as shown in Figure 3.16.

By doing so, we avoid the need of very accurate simulations of this particular

detector resolution.

Finally, instead of the normal invariant mass, we examine a two-dimensional

(2-D) invariant mass, where we ignore the opening angle between the two paired
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tracks in the φ direction. The momenta of the paired tracks are rotated to a com-

mon plane with φ = 0 and since it is a rotation, the magnitudes of the momenta

are conserved. In other words, two dimensional means that track momentum

is rotated and confined into a two-dimensional space. The purpose is to reduce

the impact of the limited resolution of the opening angle in φ direction, which in

turn is caused by limited tracking resolution [88]. The limited tracking resolution

makes it difficult to reconstruct the exact position of DCA between the two paired

tracks, i.e. the secondary vertex where the potential parent particle decays. The

badly reconstructed secondary vertex results in a bad estimation of opening angle

in φ direction, which can be seen as shown in Figure 3.17.

Figure 3.17: The two scenarios of mis-reconstructed DCA position between two
paired helices (circles in this figure are viewed from the Z axis) and the effects on
the φ opening angle.

Figure 3.18 shows both the normal invariant mass and 2-D invariant mass of

electron pairs in MinBias events. The photonic electrons are the opposite sign

pairs subtracting the same sign pairs (OS-SS). The normal invariant mass of
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photonic electrons spans a much wider range than the 2-D invariant mass does.

The π0 Dalitz decay is a three-body decay and the photon daughter is missed in

the invariant mass reconstruction. This incomplete reconstruction gives rise to

the broad peak at around 0.05 GeV in the invariant mass distribution, and it also

contributes to the peak around zero invariant mass, which is mainly from photon

conversions. If we used the normal invariant mass to select the photonic electrons,

then we would have to accept a wide mass range to contain the π0 Dalitz peak,

and this introduces more combinatorial background, which also has a broad mass

distribution. If we use a narrow mass range, we would need accurate simulation

to know the mass cut efficiency exactly, which is a difficult task. By using the

2-D invariant mass, we only need a small mass range to contain most of photonic

electrons. We do not rely on the accuracy of the simulations, but instead we rely

on the cancellation between the OS pairs and the SS pairs. We require the 2-D

invariant mass of photonic electrons to be smaller than 100MeV/c2.

In short, we studied the photonic electron pairs’ properties based on opposite-

sign pairs subtracting same-sign pairs, and we apply loose cuts on pair properties

so that the selection efficiency is high enough. In doing so, we reduce the depen-

dence on accuracy of simulations. Table 3.4 summarizes the cuts.

In addition, not every partner electron can be reconstructed by the TPC, nor

can they all pass the geometry and kinematic cuts. These inefficiencies are studied

by simulations, to be discussed in detail later. The true number of photonic elec-

trons is the number of reconstructed photonic electrons corrected for the photonic

electron reconstruction efficiency, and the number of reconstructed non-photonic

electrons equals the number of inclusive electrons after subtracting the efficiency-

corrected number of photonic electrons, summarized as in Equation 3.5.4, where

the superscript “rec” indicates the amount being reconstructed. The total NPE

would be the reconstructed NPE divided by single electron efficiency.
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Figure 3.18: The invariant mass distribution (upper plot) and 2-D invariant mass
distribution (lower plot) for oppositely signed pairs and same signed pairs in
Mini-Bias events. The photonic electrons are the opposite sign pairs after sub-
tracting same sign pairs from them. The pair opening angle cuts and pair DCA
cuts have been applied.
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Table 3.4: The cuts applied to identify photonic electrons
Variable Cut

Pair DCA ≤ 1 cm

Pair Opening Angle ≤ 0.1 rad

Pair Opening Angle in θ plane ≤ 0.05 rad

Pair Opening Angle in φ plane ≤ 0.1 rad

Pair 2-D invariant mass ≤ 0.1 GeV/c2

N rec
NPE = Ninc × purity −N rec

PE/εPE (3.5.4)

3.6 Heavy quarkonia decay and Drell-Yan

Before we proceed to detailed discussions of simulation studies of efficiencies in-

cluding εPE, we here discuss some other sources contributing to the electrons. The

second largest background, other than the photonic electrons discussed above, is

the electrons from heavy quarkonia, i.e J/Ψ and Υ decays and Drell-Yan processes.

While heavy quarkonia also consist of heavy quarks, their energy loss mechanisms

are different from single heavy quarks, and model calculations have to treat them

separately. Electrons from J/Ψ and Υ decays should be subtracted from the fi-

nal non-photonic electrons, in both p+p and Au+Au collisions. The Drell-Yan

processes should also be subtracted since they are initial state processes and not

affected by the QGP, although they could be affected by cold nuclear effects.
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Figure 3.19: The J/Ψ spectra at mid-rapidity measured by STAR [90] and
PHENIX [91]. The spectra is multiplied by the branching ratio of J/Ψ decay-
ing to e+ and e−. Figure taken from [90].
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J/Ψ spectra have been measured in Au+Au collisions at middle rapidity by

both STAR [90] and PHENIX [91] collaborations, and the results are fitted with

the Tsallis statistics Blast-wave (TBW) model with β fixed to zero, as shown in

Figure 3.19. Since these spectra are only measured at mid-rapidity, we rely on

PYTHIA [92] to estimate the rapidity distributions [93]. Although we assume the

pT spectra is rapidity-independent, the J/Ψ rapidity distributions from PYTHIA

have a pT dependence, and thus they cannot be factorized. We randomly generate

one billion J/Ψ for each centrality bin, according to the measured pT spectra

and PYTHIA rapidity distributions, and feed them into PYTHIA8 [94], in which

J/Ψ decays to an pair of electron and positron. These J/Ψ electrons within

±0.5 rapidity range are recorded and we also keep track of the number of J/Ψ

decays. The normalization is based on the matching between pT integrated J/Ψ

spectra and number of J/Ψ decays in PYTHIA. Since we lack J/Ψ measurements

at non-mid-rapidity, and the pT and rapidity distributions are correlated, the

pT range used in the normalization affects the normalization scales. We choose a

normalization range of 5 < pT < 15 GeV/c to be the nominal case and different

choices of normalization pT range yield a systematic uncertainty up to the order of

30% on the J/Ψ decay electron spectra. Figure 3.20 shows the J/Ψ decay electron

spectra at middle rapidity in different centrality bins.

Our previous study of Υ decay electrons [73] found that it contributes at most

10% to J/Ψ decay electrons. Since Υ is also suppressed in Au+Au collisions, its

contribution is even smaller than the uncertainty of J/Ψ decay electrons and thus

is neglected here.

Although the Drell-Yan contribution is also small, it is not supposed to be af-

fected by the QCD medium and may be important. Therefore, we scale up its con-

tribution in p+p collisions [73] by the number of binary collisions in Au+Au col-

lisions, and subtract its contribution from the total NPE. The Drell-Yan contri-

bution to electrons has a hard pT spectra, and it has been found to be very small
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Figure 3.20: The J/Ψ decay electron spectra at middle rapidity studied by
PYTHIA. The four panels represent four different centrality bins.
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at low pT , e.g. less than 1% at pT =2.75 GeV/c. Its relative contribution should

be even smaller at lower pT , and thus neglected at pT<2.75 GeV/c.

3.7 Ke3 decay

A PHENIX study [95] concludes Ke3 decay electrons contribute less than 10%

of heavy flavor decay electrons at pT > 1 GeV/c. STAR simulation studies [96]

confirm this and indicate the kaon contribution is several times smaller at STAR

thanks to the global DCA cut we apply, which significantly rejects kaon decay

products, since kaons decay through the weak interaction and have large cτ .

Therefore Ke3 decay electrons have negligible contribution to the measured elec-

tron yield in this analysis.

3.8 Efficiency studies

As discussed in the previous chapters, we can use photonic electrons to study the

efficiency of a given cut. We can firstly relax the cut and then apply the cut to

study the difference it makes. However, this depends on the good cancellation

between the opposite sign pairs and the same sign pairs and it might be biased

by possible correlations between different cuts, e.g. the correlation between E/p

and number of BSMD strips, and one needs to use this method with care. In our

analysis, we calculate cut efficiencies with Monte Carlo simulations and only use

photonic electrons as a cross check.

3.8.1 Introduction to embedding

The whole procedure of Monte Carlo simulations used in STAR is called embedding,

because the simulated tracks are embedded into real data and then analyzed. Em-

bedding into real events is critically important for TPC tracking, because one of
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the reasons for tracking inefficiency in the TPC is that two adjacent TPC hits

cannot always be distinguished in a very busy environment and could be merged

into one [80]. By placing simulated tracks into real events, the multi-particle and

large-detector-occupancy environment in heavy ion collisions is preserved and the

corresponding effects are well simulated. The simulation is based on GEANT3 [97]

where Monte Carlo particles of interest go through a detailed GEANT simulation

of the STAR detector. The GEANT simulations of raw detector responses, such

as the TPC hits, are mixed with real data at the raw detector response level.

The TPC hits, both simulated and real, are reconstructed with the same code

as used in the real data production. We associate the reconstructed tracks with

Monte Carlo tracks by comparing their TPC hits. We apply the same cuts to

those reconstructed tracks originating from Monte Carlo tracks and calculate the

cut efficiencies based on these tracks.

For some of the cuts, such as E/p and number of BSMD strips, after obtaining

the efficiencies from photonic electrons, we verify that the embedding gives con-

sistent efficiencies, or we improve the simulation. For nσe distributions, accurate

simulation is difficult, although the STAR simulation team is currently trying to

improve this and the results look promising. The nσe cut efficiencies are obtained

from the multi-Gaussian fits, as discussed above.

3.8.2 Single electron efficiency

The single electron efficiency includes the detector acceptance, general tracking

efficiency, and electron identification cuts efficiencies. In the embedding, electrons

are simulated with flat pT , flat η and flat φ distributions. Flat pT distribution is

necessary to ensure enough statistics at high pT and thus enough precision can be

achieved. Intermediate NPE spectra will be firstly calculated without re-weighting

the flat pT electrons in emebedding. Then the intermediate NPE spectra will be

corrected for the finite resolution of the reconstructed pT . In the embedding,
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roughly same amounts of tracks are shifted to lower and higher pT due to the flat

input spectra. However, in reality there are more tracks being shifted to higher

pT than those being shifted lower, as a result of the falling pT spectra at not-so-

low pT . To account for this effect, we will re-weight the input electrons in the

embedding according to the intermediate NPE spectra and obtain a set of new

efficiencies, which are used as the nominal values to obtain the final NPE spectra.

In Figure 3.21, we compare the η and φ distributions of reconstructed tracks

from embedding with data. The non-uniformities in both cases are due to detector

acceptances and the embedding distributions reasonably match the data. The

sharp dips in the φ distribution are due to TPC sector boundaries and the drop

in φ between roughly −1 ∼ 0 rad is due to one TPC sector being removed from

data production as a result of its bad calibration. The TPC tracking efficiency

is shown in Figure 3.22. As mentioned before, the tracking efficiency depends on

the TPC occupancy and the most central events have the lowest efficiency, as we

shall see in Figure 3.25. We study the efficiencies from embedding for different

centrality ranges, corresponding to the real-event analysis.

The simulated BEMC responses are also analyzed by the same codes as in

the data analysis, including the BEMC Point Maker and the same track-point

association algorithm. The efficiency of an electron being associated with its

BEMC point is shown in Figure 3.24. As in the data analysis, the BEMC points

in embedding also must have all three planes of BTOW, BSMD-η and BSMD-φ.

In embedding, the E/p cut has a 95% efficiency over the whole pT range, while it

is 99% from data as we discussed before.

We recently improved the BSMD simulation by correctly implementing the

energy leakage between adjacent BSMD-η strips, which is due to channels picking

up the signals from neighboring channels (cross-talk). From the design of the

BSMD, this cross-talk effect was expected to be present but small, approximately

4 ∼ 5% at the low η end and decreasing to 0% at the high η end of a BSMD
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module [98]. We found if we introduce a 3% cross-talk at the low η end of the

BSMD-η plane, and this cross-talk decreases linearly with respect to η, then the

simulation can reproduce the distributions of the BSMD-η strips very well. The

cross-talk for BSMD-φ is more complicated, but seems less important, since the

simulation can reasonably reproduce the data with or without cross-talks. In

Figure 3.23, we compare the number of BSMD-η and -φ strips for pT 2 to 4

GeV/c from simulation with data for photonic electrons. In the photonic electron

sample from data, the chance that two electrons matching to one BEMC point is

small, since the energy over momentum for photonic electron, shown in Figure 3.9,

peaks at one. To double check this, we make a special photonic electron sample

by requiring that the opening angle in θ between the paired electrons to be larger

than 0.02 rad, and smaller than 0.05 rad. In this sample, the two electrons are

at least about 5 cm apart on the BSMD planes, largely reducing the chance of

both firing the same BEMC point. We found consistent results, but the statistics

are limited. From single electron simulation/embedding, the efficiency for an

individual BSMD plane cut is around 90% at 2 to 3 GeV/c, and above 95% at

above 5 GeV/c, consistent with what we obtained from data, as discussed before.

The performance of BEMC and BSMD has been studied and propagated into

the embedding. To make sure the consistence, we further study the performance

of BEMC and BSMD in both data and the embedding by calculating the fraction

of bad channels. A bad channel is defined as a channel with number of hits less

than 10% of the average. We find the combined effect of bad channels on three

planes is about 20% in data and about 10% in embedding. The difference is

corrected and the uncertainty in the correction procedure is accounted for. In

Figure 3.24, the total BEMC related efficiency is shown. At very high pT , this

efficiency closely reflects the acceptance of the BEMC and BSMD.

As a summary to the discussion of the single electron efficiency, we plot the

overall efficiencies, excluding the efficiencies of nσe cuts, in each centrality range
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Figure 3.23: Number of BSMD-η and -φ strips for pT 2 to 4 GeV/c. The blue
triangles are from photonic electrons in data, and the red circles are from single
electron simulation.
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Figure 3.24: The combined efficiency for an electron matched to a BEMC point,
passing both the E/p cut and number of BSMD-η and -φ strips cuts. This effi-
ciency does not include any TPC-related efficiencies.

in Figure 3.25. The ordering of centrality seen in the overall efficiency is a direct

result of the centrality dependence of the TPC tracking efficiency.

3.8.3 Photonic electron reconstruction efficiency

Similar to the single electron embedding, we simulate gamma conversions and π0

Dalitz decays in the STAR detector and the decay daughters are embedded into

real events. While the gamma conversions are well simulated processes, which do

depend on an accurate accounting of the material budget at STAR, the original

π0 Dalitz decay in GEANT only accounts for the phase space factor of the decay

process. As a result, π0 Dalitz decay in our GEANT simulation has been modi-

fied from a simple 3-body decay in phase space to the correct Kroll-Wada decay

formalism [73, 99]. After the modification, the invariant mass of Monte Carlo e+

and e− from Dalitz decays in simulation is shown in Figure 3.26. In comparison,
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the reconstructed invariant mass and two dimensional (2-D) invariant mass dis-

tributions in simulation are shown in Figure 3.27. In the analysis, we accept a

2D invariant mass less than 0.1 GeV/c2, which accepts the majority of π0 Dalitz

decays.

Figure 3.26: The invariant mass of e+ and e− pairs from the Dalitz decays in
simulation.

In Figure 3.28, we show some examples of the opening angles between the

Monte Carlo e+ and e− pairs from Dalitz decays in the simulation. The distance-

of-closest-approach (DCA) between Monte Carlo e+ and e− pairs from Dalitz de-

cays is zero by default, so in Figure 3.29, we show the DCA between reconstructed

e+ and e− pairs from Dalitz decay, which represents the distance resolution. From

these plots, we show that our choices of pair property cuts accept the majority

of photonic electron pairs and thus the the background reconstruction efficiency

does not depend significantly on accuracy of simulation.

The separated photonic electron reconstruction efficiencies for γ conversion and
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Figure 3.27: Left Plot: The invariant mass of reconstructed e+ and e− pairs from
the Dalitz decays in simulation. Right Plot: same as the Left Plot, except plotting
the 2D invariant mass.
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Figure 3.28: Left Plot: The opening angle of Monte Carlo e+ and e− pairs from
the Dalitz decays in simulation. Right Plot: same as the Left Plot, except plotting
the opening angle in the φ direction (transverse plane) alone.
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Figure 3.29: The distance-of-closest-approach of reconstructed e+ and e− pairs
from the Dalitz decays in simulation.
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π0 Dalitz decays are studied, typical examples shown in Figure 3.30, and they are

then combined together. Since photonic parents at different pT will give rise to

different properties of the daughter electron-positron pairs, the real pT spectra of

photonic parents must be correctly reflected in the embedding. We use the γ and

π0 spectra measured by the PHENIX experiment at RHIC [100] to weight the

flat input γ and π0 in the simulation. A large fraction of the photons come from

π0 → γ + γ decays. Figure 3.31 shows a typical ratio of the gamma conversion

contribution divided by the total photonic electrons, which are identified as part of

the inclusive electrons in the embedding, i.e. the material budget factor has been

applied for gamma conversions. We have required the parent γ and π0 to have at

least pT>0.2 GeV, because 1) low pT γ and π0 should have very small probability

to produce high pT electrons 2) there are no reliable measurements below this

pT and the weighting functions used here continue increasing unrealistically at

lower pT .
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Figure 3.30: The overall photonic electron reconstruction efficiency for γ conver-
sion on the left and for π0 Dalitz decays on the right, in embedding, centrality
0-10%.

In summary, the photonic electron reconstruction efficiency εPE from combined

γ and π0 in embedding is shown in Figure 3.32. The fitting function used in the

plots is p0

e−(pT −p1)/p2+1
+ p3, where p0 to p3 are fitting parameters.
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trons that are identified as part of the inclusive electrons, in the embedding for
centrality 0∼10%. Binomial errors are used. The γ conversion fractional contri-
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Figure 3.32: The overall photonic electron reconstruction efficiency based on com-
bined γ and π0 in embedding in each centrality
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3.9 High tower trigger efficiency

We can obtain the High tower trigger efficiency from either MinBias-High Tower

comparisons or from the embedding. Our nominal method is the former one. For

the first High Tower trigger, NPE11, we directly compare the spectrum of electrons

in the inclusive electron sample in NPE11 with that in MinBias, and this ratio

is shown in Figure 3.33. There is not enough statistics in NPE11 at pT below

2 GeV/c, while MinBias events run out of statistics at pT above 5 GeV/c, esp.

not enough for the electron purity determination. The pT distribution of the ratio

of these two spectra, NPE11 divided by MinBias, presents the trigger efficiency

of NPE11. An error function can usually be used to describe the turn-on of

a threshold, e.g. the trigger threshold here. The error function erf , with two

parameters, is -1 at negative infinity and +1 at positive infinity. Therefore, we

use 0.5×(1+erf) to fit the ratio distribution, so that it is approaching zero at low

pT and approaching unity at high pT . One of the parameters, labeled as “1/2-eff

pT ” since it is the pT where the efficiency is 50% (roughly the “turn-on” point

of the trigger), is fitted to be around 3.0 GeV/c, approximately 0.5 GeV higher

than the ET cut used in the high tower trigger. The other parameter, labeled as

“width”, indicating the rough range of trigger inefficiency, is fitted to be around

0.69 GeV/c. As discussed before, we rely on fittings to the nσe distributions to

obtain the purities of inclusive electrons and to calculate the number of electrons

in the inclusive electron sample. Since the nσe distributions are different in High

Tower and in MinBias, due to the fact that BEMC enhances electrons, the electron

purities are also different in the two triggers. Furthermore, the uncertainties on

the resulting purities are also different in High Tower and MinBias sample, and

are not correlated. Figure 3.33, however, only includes statistical uncertainties.

As we shall see, we do not use any pT range where the statistical precision is very

limited.
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Figure 3.33: The spectrum of pure electrons in the inclusive electron sample in
the NPE11 trigger divided by that in the MinBias trigger. The event centrality
is 0 to 60%.
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Several aspects of the trigger efficiency have been cross checked. First of all,

there are substantial energy deposits in the BEMC from the underlying event in

Au+Au collisions. These energy deposits are random, but they do depend on the

particle density and thus on the event centrality. We repeat the fitting procedure

for each individual centrality and compare each individual result with the average

one for 0 to 60% centrality, as shown in Figure 3.34. As expected, a systematic

evolution of the trigger efficiency with respect to centrality is seen. The most

central events have a higher trigger efficiency than average, since there are more

random energy depositions in the more central events, whereas the most peripheral

events have lowest trigger efficiency. We find that for electron pT > 3.5 GeV/c

the differences are smaller than 5%.

Secondly, the inclusive electrons include both photonic electrons and non-

photonic electrons, which do not necessarily have exactly the same trigger ef-

ficiency. Thus, we also check the trigger efficiency based on photonic electron

spectrum, as shown in Figure 3.35. The photonic electron sample is based on

opposite sign pairs minus same sign pairs, which provides pure photonic electrons

without hadron contamination, so there is no issue with the electron purity estima-

tion. Since the nσe cuts used in High Tower and MinBias triggers are exactly the

same, there is no issue with the nσe cut efficiency estimation either. As a result,

statistical error bars represent the true uncertainties, and thus the goodness-of-fit

is very close to one (χ2/ndf = 10.04/10). However, we still use the trigger effi-

ciency based on inclusive electrons as the nominal value. Comparison between the

trigger efficiency based on photonic electrons and the nominal efficiency indicates

they are almost identical with each other for pT > 3.5 GeV/c.

In short, by comparing NPE11 trigger efficiencies obtained with different elec-

trons samples, we now have a good control of the NPE11 trigger efficiency at

pT > 3.5 GeV/c, so we will begin to use NPE11 data at pT = 3.5 GeV/c, without

using the MinBias data.
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Figure 3.34: The NPE11 trigger efficiency based on inclusive electron spectrum
in each centrality divided by that in 0∼60% centrality. The four panels represent
four individual centrality bins.
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Figure 3.35: Upper: The NPE11 trigger efficiency based on photonic electron
spectrum, fitted by error function. Lower: The NPE11 trigger efficiency based on
photonic electron spectrum divided by the nominal trigger efficiency.
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Now we repeat a similar procedure for the second High Tower trigger, NPE15.

Since the MinBias trigger is essentially out of statistics, we compare NPE15 with

NPE11 instead, with the raw NPE11 inclusive and photonic electron spectra being

corrected by the NPE11 trigger efficiency obtained above. We show the NPE15

trigger efficiency based on the electrons in the inclusive electron sample in Fig-

ure 3.36. We compare the NPE15 trigger efficiency obtained for each individual

centrality with the nominal one in 0 to 60% in Figure 3.37, where the centrality-

dependent deviations from the nominal one follow the same pattern as seen for the

NPE11 trigger. We also compare the efficiency based on photonic electrons with

the nominal one in Figure 3.38. For pT>5 GeV/c, the largest deviation, about

15%, from the nominal efficiency is seen in Figure 3.38. Based on these compar-

isons, we will begin to use NPE15 at pT>5 GeV/c, dropping NPE11 at the same

time, with a proper systematic uncertainty assigned to cover the difference.
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Figure 3.36: The spectrum of electrons in the inclusive electron sample in NPE15
trigger divided by that in NPE11 trigger after correction. The event centrality is
0 to 60%.
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Figure 3.37: The NPE15 trigger efficiency based on inclusive electron spectrum
in each centrality divided by that in centrality range 0∼60%. The four panels
represent four different centrality bins.
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Figure 3.38: Upper: The NPE15 trigger efficiency based on photonic electron
spectrum, fitted by error function. Lower: The NPE15 trigger efficiency based on
photonic electron spectrum divided by the nominal efficiency.
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3.10 Systematic uncertainties

3.10.1 From photonic electron reconstruction efficiency

There are several sources for uncertainties in the photonic electron reconstructions,

including the input γ and π0 spectra used as the weights, the partner electron

reconstruction/selection, and the photonic electron pair selection criteria. We

have demonstrated that the criteria to select the photonic electron pairs in this

analysis are loose enough so that our results will not be sensitive to details of cuts.

We also vary parameters and criteria directly related to the former two sources.

For example, the input spectra have been varied from π0+ direct γ to π0 alone,

and also to π0 + 2× direct γ, etc. The photonic electron reconstruction efficiency

responds to these variations in complicated ways, but almost always within 10%

of the nominal values. The ratio of electrons from π0 Dalitz contribution to those

from γ conversions has also been varied up and down by a factor of two, and the

combined photonic electron efficiency changes by less than 5%. Overall, we assign

a 10% systematic uncertainty to the photonic electron reconstruction efficiencies,

and after being propagated to the NPE spectra, results in a relative uncertainty

of about 10% to 15% depending on pT .

3.10.2 From single electron efficiency

Another very important source of systematic uncertainty is from the single elec-

tron efficiency, esp. from nσe fittings and the High Tower trigger efficiency. To

understand the former, we relax the nσe cuts used in the analysis so that the

efficiency of the cuts are higher but more hadrons are allowed to leak into the

inclusive electron sample. The difference between the NPE spectra with relaxed

cuts and that with nominal cuts is regarded as the systematic uncertainty and we

find it is typically at approximately 10% level, but it occasionally becomes more

than 20%. As aforementioned, we corrected the BEMC and BSMD performance
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in the embedding to match that in data, and this procedure gives rise to system-

atic uncertainties. We re-defined a bad channel as a channel with number of hits

less than 50% of the average, a tight requirement, to obtain the upper limit of the

correction. We obtained the lower limit by assuming no correction is needed. This

systematic uncertainty is roughly 10%. In addition, we studied both electrons and

positrons, separately, in the embedding and the small difference between them is

accounted for in the systematic uncertainty.

The uncertainty on the High Tower trigger efficiency, coming from the various

ways we calculate the trigger efficiency, only exists at the trigger transitions and it

has been fully discussed above. Namely, we start to use NPE11 at pT >3.5 GeV/c,

and there is only about 2% uncertainty on the trigger efficiency; however, the trig-

ger efficiency for NPE15 has a 1
0.84

− 1 ∼ 20% uncertainty at pT =5.25 GeV and

a 1
0.95

− 1 ∼ 5% uncertainty at pT =5.75 GeV due to the discrepancy between

the efficiency based on photonic electrons and the nominal efficiency. The differ-

ences on the trigger efficiency found in individual centrality are much smaller and

neglected.

The uncertainties from other sources, including number of BSMD strips, E/p,

and the TPC tracking, typically are at most a few percent, and are neglected.

For example, based on the comparison of BSMD strips distributions in data and

in embedding, as discussed before, we find the uncertainty of the efficiency of

the number of BSMD strips cut is on the level of approximately 4%, and no

obvious dependence on pT . Similarly, the uncertainty is about 1% for the E/p cut

efficiency, thanks to our rather loose cut choices for both E/p and BSMD.

3.10.3 From J/Ψ and other feed down

The systematic uncertainty for J/Ψ feed down is due to lack of experimental data

at full rapidity range, which overwhelms the uncertainty of the fitted J/Ψ spec-
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tra at mid-rapidity [90]. This systematic uncertainty is obtained using different

pT ranges for PYTHIA normalization, which could be as large as 30% as men-

tioned previously. Figure 3.39 shows the J/Ψ decay electrons divided by the total

NPE, and only this J/Ψ uncertainty due to normalization is shown, in order to

emphasize it. There is a 50% uncertainty for the Drell-Yan contribution, but this

is already included as part of the statistical error.

3.11 Additional ingredients for NPE RAA

To obtain the NPE Nuclear Modification Factor RAA, the NPE spectrum in

p+p collisions E d3σpp

d~p3 and the average number of binary nucleon-nucleon colli-

sions for each Au+Au centrality class must be utilized, as in Equation 3.11.5,

RNPE
AA (pT ) =

dN2
AA/(dpTdy)

< Ncoll > dN2
pp/(dpTdy)

=

1
2π

d2NAA

pT dpT dy

< Ncoll >
1
2π

d2Npp

pT dpT dy

(3.11.5)

where 1
2π

d2Npp

pT dpT dy
= E d3σpp

d~p3 /σpp, and we use σpp = 42mb, consistent with the

Glauber calculations where the number of binary collisions < Ncoll > are obtained.

A precision measurement of the NPE spectrum in p + p collisions at
√
s =

200 GeV has already been published recently based on STAR data taken during

RHIC Run05 and Run08 [73], as shown in Figure 3.40, and is also listed in Ta-

ble 3.5. A pQCD prediction [59] is found to be consistent with the measurements.

This p+p spectrum has a 8.1% global uncertainty in additional to point-by-point

systematic uncertainties, which are typically close to 20% but as much as 34% at

pT =7 GeV/c and 66% at pT =9 GeV/c. The number of binary collisions < Ncoll >

also gives rise to considerable uncertainty in the peripheral centrality bins, as

shown in Table 3.6.
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Figure 3.39: Representative plots of J/Ψ decay electron divided by total NPE for
different centrality. The systematic uncertainties come from the different choices
of normalization range.
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Figure 3.40: (color online) (a) NPE invariant cross section in p + p collisions
from a previous STAR measurement [101](closed triangles), a PHENIX measure-
ment [102] (open triangles) and the recent STAR measurement [73] (closed circles).
(b) Comparison to the FONLL calculations in [59]. Figure taken from [73].
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Table 3.5: Invariant cross section for non-photonic electron production ( e++e−

2
) in

p+ p collisions measured in [73] and used for this analysis.

pT (GeV/c) E d3σ
d~p3 (mb GeV −2 c3) stat. uncertainty syst. uncertainty

2.75 1.536747e-006 2.261030e-007 2.946275e-007
3.25 5.944377e-007 7.145496e-008 1.085212e-007
3.75 2.564046e-007 2.716573e-008 3.560173e-008
4.25 1.201271e-007 1.340690e-008 1.549221e-008
4.75 6.186093e-008 6.731042e-009 7.622289e-009
5.25 2.450933e-008 3.723545e-009 3.498343e-009
5.75 1.397378e-008 1.900307e-009 2.003147e-009
7.00 2.384259e-009 2.850461e-010 8.178320e-010
9.00 6.858185e-010 1.481453e-010 4.521734e-010

Table 3.6: Number of binary nucleon-nucleon collisions for each Au+Au central-
ity [103]

Centrality Nbinary Uncertainty
0∼5% 1048.11384 27.46719
0∼10% 941.23714 26.27357
10∼20% 593.66913 30.17927
20∼40% 290.87634 30.46602
40∼60% 91.33495 20.00852
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3.12 Results and discussion

3.12.1 NPE pT spectrum and RAA Results

The NPE spectrum can be written as Equation 3.12.6, and the NPE pT spectrum

is calculated using Equation 3.12.7.

E
d3NNPE

AA

d~p3
=

1

2π

d2NNPE
AA

pTdpTdy
{1 +

∞
∑

n=1

2vn cos[n(φ− Ψr)} (3.12.6)

1

2π

d2NNPE
AA

pTdpTdy
=

1

2π

NNPE

δbinshiftNevent pT ∆pT ∆y

=
1

2π

Ninc · purity −N rec
PE/εPE

εe δbinshiftNevent pT ∆pT ∆y

(3.12.7)

where ∆y = 1.4 since we approximate electron rapidity with electron pseudo-

rapidity, and we have extensively discussed the counting of Nevent in both MinBias

and High Tower triggers. What we directly measure in the analysis is the average

NPE cross section in each pT bin, whereas what we want to represent in terms

of spectra is the NPE cross section at the exact center of each pT bin, which are

two different variables. A shifting factor δbinshift is used to convert the former

to the latter. δbinshift is determined by the spectrum shape, esp. the deviations

from linearity, whereas the spectrum scale is not important. We assume that the

spectrum shape is of the functional form Equation 3.12.8 and indeed we find that

the raw NPE spectra can be fitted very well with such a functional form (very

small χ2/ndf). Based on the fitted spectra, we calculate a tentative set of δbinshift

by dividing the bin average values by the values at the center of each pT bin. We

apply these tentative δbinshift to obtain new spectra and fit the new spectra again

and obtain a new set of δbinshift. We repeat the procedure for three iterations,

after which the shifting factors δbinshift are stabilized. The final δbinshift factors
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Table 3.7: δbinshift: pT bin average of NPE cross section divided by NPE cross
section values at the center of each pT bin

pT (GeV/c) 2.75 3.25 3.75 4.25 4.75 5.25 5.75 7.00 9.00
0 ∼ 5% 1.07 1.06 1.05 1.04 1.03 1.03 1.02 1.30 N/A
0 ∼ 10% 1.07 1.06 1.05 1.04 1.03 1.03 1.02 1.32 1.21
10 ∼ 20% 1.07 1.06 1.04 1.03 1.02 1.02 1.02 1.26 1.16
20 ∼ 40% 1.06 1.05 1.04 1.03 1.03 1.02 1.02 1.26 1.16
40 ∼ 60% 1.06 1.05 1.04 1.03 1.03 1.02 1.02 1.27 1.17

are listed in Table 3.7.

1

2π

d2NNPE
AA

pTdpTdy
=

A

(1 + pT/p0)n
(3.12.8)

After the δbinshift corrections, Figure 3.41 to 3.45 show the final spectra of non-

photonic electrons from the decays of open heavy flavor hadrons in Au+Au colli-

sions in different centrality bins and the corresponding nuclear modification factor

RAA. Scaled NPE spectra in p+p collisions are also plotted for comparison, but

their systematic uncertainties are not drawn in the figure in order to give a clear

view of the Au+Au results. The NPE production is found to be highly sup-

pressed in central and semi-central Au+Au collisions, and moderately suppressed

in semi-peripheral collisions.

3.12.2 Model comparison

Now we compare our results to some recent model calculations. As we discussed in

the Introduction chapter, early model calculations indicate that radiative energy

loss alone cannot explain the large heavy flavor electron suppression observed

experimentally. Many efforts have been made to improve model calculations, and

at the same time, additional mechanisms have also been proposed. Particularly,

collisional energy losses due to heavy quark elastic scatterings are thought to be

very important and the details of such processes are carefully examined.
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Figure 3.41: The NPE spectrum and RAA in 0 to 5% centrality.
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Figure 3.42: The NPE spectrum and RAA in 0 to 10% centrality.
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Figure 3.43: The NPE spectrum and RAA in 10 to 20% centrality.
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Figure 3.44: The NPE spectrum and RAA in 20 to 40% centrality.
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Figure 3.45: The NPE spectrum and RAA in 40 to 60% centrality.
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For example, the GBA model calculation [67] shown in Figure 3.46 considers

the running of the strong coupling constant and uses a physically determined

infrared regulator in the t channel scattering processes [104]. This model finds

that a factor of around 2 (the K factor) larger coupling is required to explain the

data, and it attributes this deficit to be exactly what radiative energy loss should

contribute. Differences between bottom mesons and charm mesons are observed

in this calculation, calling for the experimental disentanglement of charm and

bottom contributions.

Figure 3.46: The heavy flavor meson RAA in a pQCD calculation of heavy quark
collisional energy loss in QGP. Model E is with a running strong coupling constant
and it requires a K factor of 2 to explain the data, leaving reasonable room for
radiative energy loss; and Model C is without such running and requires a K
factor of 5, which is too large to be filled by radiative energy loss. The k value is
related to the value of the infrared regulator in the t channel [104]. Although this
is for heavy mesons, the flat feature of this RAA calculation makes it comparable
to NPE RAA, which is essentially pT shifts. Figure taken from [67].

Other models, e.g. the HFR model [52], considered collisional processes be-

tween heavy and light quarks involving (quasi-)heavy flavor hadrons forming inside

the QGP. Due to their small Lorenz time dilation from their heavy mass and low
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speed, the formation time of heavy flavor hadrons could be short enough so that

they are formed inside the QGP. Although such quasi-hardon formations involve

non-perturbative processes, HFR utilized the potential between heavy and light

quarks estimated from finite-temperature lattice QCD to make quantitative pre-

dictions. HFR pointed out that these quasi-hadrons can significantly enhance

the coupling between the heavy quarks and the medium by a factor of about 4

compared with pure elastic pQCD scattering. The medium evolution is treated

with different approaches in this calculation to explore the consequence of medium

properties. Shown in Figure 3.47, the results labeled as “fireball” are based on a

simple modeling of the QGP with the bulk elliptic flows, and the results labeled

as “AZHYDRO” are based on a more realistic 2+1 dimensional hydrodynamics

modeling of the QGP. Different values of the impact parameter are also used to

represent different centrality classes, including the most central collisions (b = 0

fm) and more peripheral collisions (b = 7 fm). The calculated NPE RAA with

b = 0 fm shown in Figure 3.47 is in good agreement with the data for 0 to 5%

central events measured in this dissertation within the uncertainties.

The individual suppressions for charm mesons and bottom mesons calculated

by the HFR model are significantly different from each other, as shown in Fig-

ure 3.48(a), and thus a small variation of bottom/charm ratio could change the

combined RAA considerably. In particular, this calculation combines electrons

from charm decays with those from bottom decays according to PYTHIA gener-

ated spectra for the hard scatterings, which are slightly different from the recent

STAR measurements of bottom/charm ratios in p+p collisions [72], esp. at 3 and

4 GeV/c as shown in Figure 3.48(b). As a result, it is still critical to separately

measure charm and bottom decay electrons in Au+Au collisions, before definitive

conclusions can be drawn.

The SVZ model [66] has also studied the heavy quark hadron formations inside

the QGP medium, and furthermore considered the subsequent dissociations of
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Figure 3.47: The NPE RAA from a calculation of heavy quark collisional energy
loss in a hydrodynamic background, which considers heavy quarks forming Fes-
hbach resonances inside the QGP, on top of pQCD elastic scattering. Results
involving different treatments of the QGP medium and different impact parame-
ters are drawn together for comparison. Figure taken from [52]. The STAR data
shown in this plot is from a previous measurement, not from this dissertation.

(a) Separated charm and bottom RAA (b) The bottom fractional contribution

Figure 3.48: a)The charm quark (meson) and bottom quark (meson) RAA calcu-
lated in [52]. b) The bottom fractional contribution to total NPE in the model
calculation, compared with RHIC measurements (see [52] and references therein).
Both figures are taken from [52].
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the heavy quark hadrons within the medium. Shown in Figure 3.49, the SVZ

model adds the heavy hadron forming-dissociation energy loss on top of the gluon

radiation energy loss of the heavy quarks prior the forming of hadrons. The

results are consistent with our data within the uncertainties. We note that, while

the collisional energy loss can explain the data so far, it is expected to yield to

radiative energy loss at higher pT , and the SVZ model has both built in. However,

the current experimental data at STAR only effectively covers up to pT ∼ 6 GeV/c,

and the direct test of radiative energy loss at higher pT remains an experimental

challenge.

Figure 3.49: The NPE RAA from the SVZ model calculation of heavy quark
hadronization inside the QGP, on top of heavy quark radiative energy loss. The
results for both Au+Au and Cu+Cu collisions are shown. Figure taken from [66].
The STAR data shown in this plots is from a previous measurement, not from
this dissertation.

In conclusion, while the radiative energy loss alone cannot explain the signifi-

cant suppressions of NPE in central Au+Au collisions observed in the experiments,

the recent model calculations involving collisional energy loss seem to be able to

match the data up to pT ∼ mHQ. However, the energy losses for charm and
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bottom are often vastly different in the model calculations, and a precise experi-

mental measurement of charm/bottom ratios is critical, which will be fulfilled by

the incoming STAR HFT upgrade. In addition, to further test and discriminate

the models, larger dynamical range and more powerful heavy flavor observables,

such as the elliptic flow, should be explored in both models and experiments.
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CHAPTER 4

NPE azimuthal anisotropy and correlation

In the last chapter, we presented our measurement of the NPE spectra in Au+Au col-

lisions. The suppression of NPE at high pT indicates that heavy quarks lose con-

siderable energy inside the QGP medium. Recent model calculations are able

to reasonably explain such suppressions, though details of the models remain

to be confronted experimentally. For example, non-perturbative features and/or

parameter tunings are often involved in the models. To better understand the

mechanism of heavy quark energy loss and to better constrain dynamical models,

we should investigate the QGP medium with more differential probes. We present

the first exploration of the NPE azimuthal anisotropy and NPE-hadron azimuthal

correlation measurement from STAR.

4.1 NPE azimuthal anisotropy

Two dynamical processes could cause a finite heavy quark azimuthal anisotropy,

which could be measured in terms of an elliptic flow as we discussed in chapter one.

Firstly, if the coupling between the heavy quarks and the QGP medium is strong

enough, the heavy quarks could more or less thermalize inside the medium and

gain collectivity, just like the light quarks do. Secondly, when the heavy quarks

traverse the medium, their path lengths within the medium vary azimuthally

and the path-length dependence of heavy quark energy loss could give rise to

an effective azimuthal anisotropy as shown in Figure 1.14. While the former

process could dominate for low pT heavy quarks, the latter is expected to be
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more important at high pT , since high pT heavy quarks may be too energetic to

be thermalized. Both processes are based on heavy quark interacting with the

QGP medium. Simultaneous measurements of RAA and v2 over a broad pT range

can shed light on our understanding of heavy quark energy loss and heavy quark

propagation in the QGP.

Since we use the electrons from heavy quark decays as the proxies for heavy

quarks, it is necessary to examine how good the approximation is, which can be

studied in PYTHIA since it is mainly determined by the decay kinematics. In

Figure 4.1, the azimuthal angles of bottom quarks and their daughter electrons

are found to be very consistent with each other once electron pT is high enough,

approximately at pT> 3 GeV/c. For charm quarks, the consistence begins earlier

at pT > 1.5 GeV/c. For this reason, we will focus on high pT electrons in the

elliptic flow and correlation studies, and we will only use High Tower triggered

events.

Figure 4.1: The cosine of the difference between the azimuthal angles of bottom
quarks and the decay electron daughters, as a function of electron pT , as studied
in PYTHIA. At high electron pT , the cosine approaches one, meaning the angle
difference approaches zero.
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4.1.1 Event Plane Reconstruction

The first step of the elliptic flow measurement is to reconstruct the event plane

ΨEP , which is an estimation of the unmeasurable true reaction plane. There are

several sub-steps to measure ΨEP , which are summarized as the following:

• φ-angle weighting. Since the detectors are not perfectly uniform along the

azimuthal angle φ, we apply a weight to each φ angle so that the track φ

distribution is forced to be flat. The weight assigned to each φ angle is

proportional to the inverse of track multiplicity found in this angle over all

the events. Since the track curvatures are different depending on the pT ,

this weighting is done individually for each pT range.

• We use all the primary tracks, with 0.15 < pT<1.5 GeV/c within |η| < 1,

to reconstruct the event plane. All the tracks with |nσe| < 3 are excluded

to avoid the possible auto-correlations due to electrons.

• The tracks are randomly divided into two equal sub-groups and a sub-event

plane is calculated for each group, based on which the resolution of event

plane can be calculated. For each sub-event plane, two vectors are defined

as X =
∑

i ωi cos(2 × φi) and Y =
∑

i ωi sin(2 × φi), where i goes through

all tracks in the group, and ωi is a weight, usually chosen to be pT . The

event plane is then calculated as ΨEP = arctan(X
Y

)/2 [25].

• From a physics point of view, the (sub)event plane must be truly random

across all the events, as a result of the truly random collision impact pa-

rameter. To make sure the randomness and to cancel any residual effects of

detector non-uniformity, we force the calculated (sub)event planes to be flat

via a shifting method. For more details of the shifting method, see [105].

In Figure 4.2, we show an example of the event plane distribution after the

shifting, which is fitted by a Fourier expansion up to the 16th order and all the
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coefficients are found to be very small, indicating the flatness of the distribution.
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Figure 4.2: The event plane ΨEP distribution.

4.1.2 Hadron flow

There are two common methods to measure the elliptic flow. In the first method,

we measure the particle production differentially at all azimuthal angles with

respect to the event plane, and fit the distribution with Equation 4.1.1.

dN

d∆φ
= const× [1 + 2 × v2 × cos(2 × ∆φ)] (4.1.1)

where ∆φ ≡ φ − ΨEP is the particle azimuthal angle φ with respect to the

event plant ΨEP , reconstructed event by event as discussed above. We refer to

this method as the fitting method.

The second method utilizes the fact that each coefficient of the Fourier expan-

sion of particle production (see Equation 1.3.1) can be expressed as Equation 4.1.2.

We refer to this method as the calculation method. These two methods are es-

sentially the same, mathematically speaking. However, the uncertainties of the
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fitting method come from the CERN ROOT Toolkit [106] we are using, and we

manually calculate the statistical uncertainty for the other method. By using both

methods, we have a cross-check, esp. on the uncertainty estimation.

vn =

∫ π

−π
cos(n× ∆φ) · dN/d∆φ · d∆φ

∫ π

−π
dN/d∆φ · d∆φ (4.1.2)

Before measuring the NPE elliptic flow, we first cross-check the elliptic flows of

hadrons in this analysis, which are shown in Figure 4.3. They are consistent with

previously published STAR results [26].

4.1.3 NPE elliptic flow

Similar to NPE spectrum analysis, in order to access NPE elliptic flow, we have

to identify inclusive electrons and reconstruct photonic electrons. In the fitting

method, we directly measure the number of NPE in each ∆φ bin, in exactly

the same way used in the spectrum analysis, and then we fit the resulting NPE

∆φ distribution to extract NPE v2. A typical NPE ∆φ distribution is shown

in Figure 4.4, where the fit and the extracted v2 value are also shown. In the

calculation method, we separately calculate the elliptic flows of inclusive electrons,

opposite-sign pairs, same-sign pairs, and hadrons, and then the NPE elliptic flow

is obtained using Equation 4.1.3

NNPEvNPE
2 = N incvinc

2 − NOSvOS
2 −NSSvSS

2

εPE

−NhvBEMCh
2 (4.1.3)

where OS and SS are opposite-sign and same-sign pairs, and Nh is the num-

ber of hadrons in the inclusive electron sample, which is about 3% of all inclusive

electrons since tight nσe cuts are applied. The superscript BEMCh means that

only those hadrons that satisfy BEMC trigger conditions are used here to calcu-
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Figure 4.3: The charged hadrons elliptic flows at high pT in different centrality
bins measured in this analysis, compared with earlier published STAR results
based on Run04. The STAR Run04 data are from [26].
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late the v2 contribution of the hadron contamination. The statistical uncertainty

calculation and propagation are discussed in detail in Appendix B. The main sys-

tematic uncertainties are from the photonic electron reconstruction efficiency εPE,

which has a relative 10% uncertainty as in the spectrum analysis, and from the

electron purity estimation.

In addition, we note that the elliptic flow of BEMCh is always larger than that

of regular hadrons, which do not trigger the BEMC. We understand this as many

of the BEMCh hadrons are associated with jets, which trigger the BEMC. The

reason is that in our event plane determination using TPC, the presence of jets can

bias the event plane ΨEP towards the jet axis since the jet-associated hadrons have

been used in the event plane reconstruction, resulting in an overestimation of the

elliptic flow of the jet-associated hadrons, see for example [107] for more discussion.

As a result, when we subtract the elliptic flow contribution of BEMCh hadrons,

not regular hadrons; we also expect the NPE elliptic flow could be overestimated

in the same way, since the NPE come from heavy quark jets. This, and other

possible correlations between heavy quark jets and the event planes, are often

referred to as “non-flow”. Methods involving multi-particle correlations and event

plane reconstruction with tracks measured by detectors other than the TPC could

help deal with the “non-flow”, but the required statistics are currently too large

to be feasible at high pT .

Figure 4.5 shows the NPE v2 with respect to both centrality and pT , in which

both results from the fitting and calculation methods are shown. The results from

the fitting method and the calculation method are consistent with each other.

More importantly, the statistical uncertainties, one set from ROOT and the other

from our manual calculations, are also very consistent. A sizable v2 = 5% ∼ 10%

is seen for all considered centrality ranges at high pT . The NPE v2 in 20∼40%

centrality bin is likely to be larger than that in 0∼20% centrality bin and exhibits

no obvious pT dependence, although the data are statistically limited.
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Figure 4.4: A typical ∆φ = φ − ΨEP distribution for NPE. A fit with Equa-
tion 4.1.1 and the extracted NPE v2 are also shown. The event centrality is
20 ∼ 40% and electrons are with 4 < pT < 6 GeV/c.

4.1.4 Model comparison

Now we compare our results to the HFR model [52] discussed in the last chapter,

which is based on collisional energy loss and whose NPE RAA calculations are

consistent with the experimental results. This model is build upon full hydro-

dynamics simulations of the medium, and it provides v2 calculations explicitly

for heavy flavor decay electrons, as shown in Figure 4.6. The impact parame-

ter, b = 7 fm, used in the model represents centrality class roughly around 20%

based on the Glauber Model [43]. The model predictions are mostly below 5%

and thus under-estimate the elliptic flow a little if compared with, for example,

Figure 4.5(d). The imperfect match of event centrality in model and data could

be the reason for the difference, as pointed out in [52]. From the experimental

side, the heavy quark jets could bias the event planes, such that the NPE elliptic

flow is overestimated by the standard elliptic flow methods used in the analysis.

However, the PHENIX results shown in Figure 4.6 are obtained with this bias

suppressed because different detectors are used to reconstruct the event planes

and to measure the electrons [62].
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Figure 4.5: The elliptic flows of NPE as a function of centrality and pT . The
red shaded bands around zero are systematic uncertainties calculated for the fit-
ting method, accounting for the uncertainties from the photonic reconstruction
efficiency and electron purity, but should be common to both methods.
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Figure 4.6: NPE v2 in the HFR model based on collisional energy loss, as a
function of pT . Figure taken from [52]. The PHENIX results are from [62].

4.2 NPE-hadron azimuthal correlation

4.2.1 Measurements of the NPE-hadron azimuthal correlation

As previously mentioned, a high pT NPE can reflect the direction of its parent

heavy quark reasonably well. As a result, the high pT NPE-hadron azimuthal cor-

relation is a proxy of the correlation between heavy flavor jets and hadrons, which

can be used to probe the heavy quark jet-medium interaction if the associated

hadrons are related to the heavy quark-medium interaction, either from radiation

of heavy quark jets or from the medium interacted with the jet. The steps of

measuring NPE-hadron azimuthal correlation are similar to the NPE v2 measure-

ment, except that the azimuthal angle difference is calculated with respect to the

associated hadrons ∆φeh = φe − φh, instead of with respect to the event plane as

in the case of v2 measurement. However, there are several additional points worth

mentioning here.

Firstly, we need to subtract the intrinsic electron-positron correlation for each
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photonic electron pair. When we correlate electrons with hadrons, no identifica-

tion is applied to the associated hadrons to maximum the statistics, and thus

the associated hadron include electrons. If an electron (or positron) is pho-

tonic, its partner positron (or electron) will produce a very prominent correlation

at very small angle, which is a background of the electron-hadron correlation.

Therefore, during the photonic electron reconstruction process, we record the

∆φee = φe − φpartner e distributions for both opposite-sign and same-sign pairs,

and the ∆φee distributions are later subtracted from the ∆φeh = φe − φh distri-

butions of opposite-sign and same-sign pairs.

Secondly, detector non-uniformity gives rise to artificial correlations and these

are studied via a mixed-event correction method. For tracks in different events,

there are no physical correlations between them, but correlations due to detector

geometry and acceptance are kept. We choose an inclusive electron from one event

and choose hadrons from other events, and the resulting ∆φmix
eh = φe−φh,otherevent

distribution is artificially induced by the detectors, as shown in Figure 4.7(b). The

scale of this correction is on the order of 5% due to a problematic calibration of

one TPC sector, and the physical correlations we want to study are on the order

of 5% as well. Although we made many efforts to systematically understand

this correction with respect to collision centrality, primary vertex positions and

pT of relevant particles, all of which affect the correction a bit, hidden systematic

uncertainties could still distort the physics correlations. This is one of the reasons

we will not give the finalized NPE-hadron correlations based on Run10 data in

this dissertation. The STAR TPC in Run11 has no such calibration problem and

will be the ideal data set to finalize this measurement.

Thirdly, the physical background in NPE-h correlation needs to be treated

carefully. It is easy to see there is a flat pedestal background in the NPE-h

correlation distribution due to random combination of uncorrelated electrons and

hadrons. We use hadrons with 0.5 < pT < 1 GeV/c since this flat combinatorial
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Figure 4.7: Artificial correlations due to detector non-uniformity. Figure 4.7(a)
shows two hadron correlations in mixed events, where the hadrons are just reg-
ular hadrons reconstructed by TPC and not required to match the BEMC, and
therefore represents the artificial correlation due to the TPC. The series of peaks
seen in the figure are 30 degrees apart and are caused by a correlation between
the empty TPC sector (removed from data due to its calibration problem) and
all the remaining TPC sector boundaries, which are 30 degrees apart and sharp.
There is a slight enhancement underneath the peak at ∆φ = 0 which is due to the
self-correlation of the empty TPC sector. Figure 4.7(b) shows the electron-hadron
correlation in mixed events, where electrons are very loosely selected to allow co-
pious statistics but still required to satisfy the BEMC trigger condition. This
represents BEMC effects on top of the TPC effects. The statistics error bars are
too small to be seen.
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background would become overwhelming if hadrons with lower pT are used. At

the same time, the collectivity in Au+Au collisions also creates a considerable

modulated background. For example, the elliptic flow of the trigger NPE and

associated hadrons creates a background that amounts to Equation 4.2.4 [108].

Furthermore, recently it has been argued that the coefficient for the third harmonic

term (v3) in the Fourier expansion of hadron azimuthal distribution should not be

zero due to asymmetric shape of the initial collision geometry. This is called the

triangular flow [109]. While the debate regarding the hadron triangular flow is still

on-going, there is little known about the NPE triangular flow. In addition, while

the constant A in Equation 4.2.4 is normally determined via the so called Zero

Yield At Minimum (ZYAM) method [108], the systematic uncertainty related to

this method has not been adequately addressed experimentally.

A · [1 + 2 · v2, npe · v2, h · cos(2 · ∆φ)] (4.2.4)

In Figure 4.8(a), we present the NPE-h correlation in 10∼40% centrality with

the mixed event background correction but without any further background sub-

tractions. From the NPE elliptic flow measurements presented above, the NPE

v2 is around 5 to 10 percent for pT between 2 to 6GeV/c, therefore we calculate

two sets of modulated elliptic flow background, one with NPE v2 assumed to be

5% and the other with NPE v2 = 10%. We subtract these two sets of elliptic

flow background via the ZYAM method in Figure 4.8(b). The hadron elliptic

flow v2, h used here is a weighted average over the hadron pT range and the event

centrality range used in the analysis. The weight is the number of hadrons mul-

tiplied by number of NPE in each centrality, since the modulated background is

proportional to number of hadrons times number of NPE. The obtained value is

v2, h = 0.066. The electrons are selected with tight nσe cuts so that a purity

of 99% is achieved, and thus no correction is made to account for the remaining
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hadron contamination.

No systematic uncertainties are drawn in the figures, since we do not have suf-

ficient statistics to study the systematics thoroughly. Nevertheless, in both cases,

the NPE-h azimuthal correlation indicate a broadening in the away side peak,

compared with the near side peak. Qualitatively, this broadening is likely to be

caused by the heavy quark jet-medium interactions and thus reflects the imprints

of such interactions. The contribution to the correlation from a modulated tri-

angular flow background remains to be investigated with more STAR data in the

coming years.

4.2.2 Models of the NPE-hadron azimuthal correlation

The advantage of the NPE-hadron correlation is that it probes many aspects of

the dynamics of heavy quark jet-medium interactions, including both the affected

heavy quarks and the response of the QGP medium to the heavy quarks. As

pointed out by recent AdS/CFT calculations, several factors could affect the shape

and magnitude of the medium responses to the punching through of the heavy

quark jets. For example, while heavy quarks could generate strong diffusion wakes

as well as shock wave patterns (i.e. two symmetric peaks at the Mach cone angle

around a valley at ∆φeh = π) in the azimuthal correlation [110], the heavy flavor

mesons could only generate the shock wave patterns but no diffusion wakes [111].

In addition, the degree of equilibrium in the medium and the speed of heavy quarks

also affect the azimuthal correlation [112]. In short, the exact modification of the

away side peak could provide an independent way to test our understandings of

heavy quark interactions with the QGP medium, including the important question

of whether the energy loss processes are related to the formation time of heavy

flavor hadrons.
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Figure 4.8: The NPE-hadron correlations without any background subtraction
in Figure 4.8(a) and with elliptic flow background subtracted in Figure 4.8(b).
The two dashed red lines in Figure 4.8(a) correspond to elliptic flow backgrounds
with NPE v2 = 0.05and v2 = 0.1. The centrality is 10∼40% and NPE pT is
3∼6 GeV/c. The measurement over the entire 2π range has been folded into π
to enhance the statistics, considering the symmetry around the heavy quark jets
over many events. The open stars are just a reflection of the closed stars.
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CHAPTER 5

Measurement of Charm/Bottom Ratios and

Bottom quark production in p+p collisions

A precision measurement of NPE spectrum in p + p collisions at
√
s = 200 GeV

has been performed by STAR with data from year 2005 and 2008 runs [73]. While

the disentanglement of bottom and charm quark decay contributions to electrons

in Au+Au collisions cannot be achieved with the exsiting detector capability, the

disentanglement in p+p collisions has been performed by the UCLA group using

the NPE-hadron azimuthal correlation [72] (we will refer to this as the e-h paper).

In this chapter, we will combine the results of p+p NPE spectrum reported

in [73] with the fractional bottom and charm contributions reported in [72] to

obtain the spectra of electrons originated from bottom hadrons and from charm

hadron, separately. We will then show that the cross sections of bottom and

charm decay electrons are, respectively,

dσB→e+B→D→e

dye

|ye=0(3GeV/c < pT < 10GeV/c) = 4.0 ± 0.5(stat.) ± 1.1(syst.)nb

and

dσD→e

dye
|ye=0(3GeV/c < pT < 10GeV/c) = 6.2 ± 0.7(stat.) ± 1.5(syst.)nb

in p+p collisions at
√
s = 200 GeV.

Furthermore, based on various theoretical calculations, we will project the total
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bottom quark production cross section in p+p collisions at
√
s = 200 GeV to be

σbb̄ = 1.34 µb with a PYTHIA [92] calculation in the minimum-bias production

mode and 1.83 µb with the same PYTHIA calculation in the bottom-triggered

production mode. A Fixed Order plus Next to Leading Logarithm (FONLL)

prediction [59] is also normalized to data and gives σbb̄ = 1.93 µb. These total

cross section projections would also inherit the same experimental uncertainties

on bottom electron cross section at high pT , i.e. 12.5% statistical and 27.5%

systematic.

We will start with discussing the experimental measurements, and then we

will describe the PYTHIA and FONLL calculations, as well as the normalization

procedures and corrections. At the end of this chapter, we will return to the

results.

5.1 Bottom decay electrons

5.1.1 High pT eB/enpe in p+p

To disentangle bottom and charm quark decay contributions to electrons, the e-h

paper [72] noticed that in the decay processes, charm hadrons and bottom hadrons

provide different boosts to their daughters and thus the angular correlations be-

tween the daughters are different in the two cases, with the angular correlation

in charm hadron decays being narrower. By comparing experimentally measured

azimuthal correlations with theoretical calculations, the fractions of bottom de-

cays and charm decays were obtained. The results, shown in Figure 5.1, are

presented as eB/enpe (the ratio of electrons from bottom quark decays over the to-

tal non-photonic electrons) in each pT bin. This method is not expected to work

in Au+Au collisions because even the near side of the NPE-hadron correlation

could be modified by the QGP medium, and more importantly, the modification

could depend on the charm or bottom origin of the NPE.
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Table 5.1: The bottom decay contributions to non-photonic electrons, linearly
interpolated to the pT positions where the NPE cross sections are measured. The
7 GeV/c and 9 GeV/c data points are the original ones in [72].

pT (GeV/c) eB/enpe stat. err lower bound upper bound
3.25 0.342 0.062 0.312 0.374
3.75 0.393 0.065 0.362 0.440
4.25 0.435 0.073 0.392 0.502
4.75 0.468 0.087 0.404 0.559
5.25 0.517 0.086 0.440 0.604
5.75 0.582 0.069 0.501 0.636
7.00 0.522 0.066 0.462 0.552
9.00 0.497 0.104 0.436 0.639

The differential cross section of electrons from bottom decays in each pT bin

is just the NPE differential cross section (shown in Figure 3.40 and Table 3.5)

times eB/enpe in that pT bin. The contributions from J/ψ, Υ decay and Drell-

Yan processes are subtracted from the NPE cross sections based on data in [73].

However, the NPE differential cross sections and the eB/enpe ratios are usually

not measured at exactly the same pT , so interpolations are necessary. We inter-

polate the measured eB/enpe to get values at pT = 3.25, 3.75, 4.25, 4.75, 5.25 and

5.75 GeV/c. At 7 GeV/c and 9 GeV/c, original eB/enpe data points are avail-

able, and no interpolations are needed. Two different methods are used for the

interpolation.

• Interpolation method 1: a simple linear interpolation, the results of which

are listed in Table 5.1. This is the nominal method. The statistical and

systematic uncertainties are also interpolated according to the neighboring

uncertainties.

• Interpolation method 2: As a cross-check and a way to estimate the system-

atic uncertainty on the interpolation, we also use the functional form of the

FONLL prediction [59] of eB/enpe. Because the FONLL prediction was orig-

inally available as discrete points, instead of curves, we firstly parameterize
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the points of the FONLL prediction with both a third order polynomial and

a fifth order polynomial, shown in the upper row of plots in Figure 5.2. We

then compare the two different FONLL parameterizations with the mea-

sured eB/enpe, shown in the lower row of plots in Figure 5.2. We use the

parameterized polynomials, each multiplied with an overall scaling factor,

to fit the measured eB/enpe. We find the overall scaling factors for both

parameterizations should be 0.93 in order to match the data. We use the

scaled FONLL parameterizations to calculate eB/enpe at desired pT posi-

tions and find the eB/enpe ratios obtained in this way are almost identical

to the corresponding ones from linear interpolations. It is estimated that

the differences on the ratios only cause a 3% difference on the integrated

bottom decay electron cross section.

5.1.2 Differential cross section of bottom decay electrons

Based on the linear interpolation, we measured the differential cross sections of

electrons from bottom decays, listed in Table 5.2 for the nominal values and

statistical uncertainties and in Table 5.3 for systematic uncertainties. Both the

eB/enpe and NPE cross section measurements contribute similarly to the statistical

uncertainties. The combined bin-by-bin statistical uncertainty (not listed in the

table) is the sum in quadrature of the two. The dominant systematic uncertainty

is associated with the NPE cross section measurement (column E in Table 5.3).

Some of the systematic uncertainties are asymmetric. Column A (B) in Table 5.3

corresponds to the upper (lower) uncertainty on the measured eB/enpe. Column C

(D) is due to the lower (upper) limit of J/ψ, Υ decay and Drell-Yan contributions.

Column E is the systematic uncertainty of the pT interpolation, estimated by

the two different interpolation methods. The combined bin-by-bin upper (lower)

systematic uncertainty is the square root of the quadratic sum of column A (B),

column C (D), and column E. In addition, the NPE cross section measurement
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Figure 5.2: Upper Row: FONLL prediction [59] of eB/enpe (red open circles) is
parameterized by, i.e. by fitting a fifth order polynomial in the left plot and a third
polynomial in the right plot. Lower Row: The parameterized FONLL predictions
multiplying overall scaling factors are used to fit the measured eB/enpe [72] (black
solid circles). The fifth (third) polynomial parameterization are shown in the left
(right) plot. In both cases, the scaling factor is fitted to be 0.93.
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Table 5.2: The cross section of electrons from bottom hadron decays and the
relative statistical uncertainties. A: from eB/enpe; B: from NPE cross section
measurement.

pT (GeV/c) E d3σ
d~p3 (nb GeV −2 c3) stat. A stat. B

3.25 0.155699 18.1% 15.7 %
3.75 0.0785945 16.5% 13.6%
4.25 0.0422377 16.9% 13.8%
4.75 0.0242966 18.7% 13.0%
5.25 0.010306 16.6 % 18.7%
5.75 0.0068635 11.8 % 16.1 %
7 0.00103383 12.7% 14.4 %
9 0.000314954 20.9% 23.4%

Table 5.3: The relative systematic uncertainties on the cross section of electrons
from bottom hadron decays. A (B): from eB/enpe lower (upper) bound; C (D):
from higher (lower) estimation of J/ψ, Υ decay and Drell-Yan processes contri-
butions E: from the interpolation of eB/enpe if interpolation is used; F: from the
luminosity uncertainty in the NPE cross section measurement.

pT (GeV/c) syst. A syst. B syst.C syst.D syst. E syst. F
3.25 8.9% 9.1% 6.0% 5.7% 1.9% 23.9%
3.75 8.0% 11.9% 5.5% 5.2% 2.1% 17.8%
4.25 9.8% 15.3% 4.4% 4.2% 2.7% 16.0%
4.75 13.7% 19.4% 3.5% 3.3% 3.0% 14.7%
5.25 14.9% 16.8% 4.2% 3.8% 7.0% 17.5%
5.75 13.9% 9.3% 3.4% 3.0% 13.5% 17.0%
7 11.6% 5.7% 3.7% 3.1% 0% 41.3%
9 12.1% 28.7% 1.4% 1.2% 0% 71.3%

has a 8.1% global scale uncertainty due to the luminosity uncertainty. This will

be quadratically added during the integrated cross section calculation. One can

repeat this for the electrons from charm decays, with eD/enpe = (1 − eB/enpe).

The corresponding results are listed in Table 5.4 and Table 5.5. The measured

differential cross sections of electrons from bottom decays and charm decays are

shown separately in Figure 5.3.
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Table 5.4: The cross section of electrons from charm hadron decays and the
relative statistical uncertainties. A: from eD/enpe; B: from NPE cross section
measurement.

pT (GeV/c) E d3σ
d~p3 (nb GeV −2 c3) stat. A stat. B

3.25 0.299057 18.1% 15.7 %
3.75 0.121292 16.5% 13.6%
4.25 0.0548299 16.9% 13.8 %
4.75 0.0275965 18.7% 13.0%
5.25 0.00962796 16.6 % 18.7%
5.75 0.00493872 11.8 % 16.1 %
7 0.000945195 12.7 % 14.4 %
9 0.0003192 20.9% 23.4%

Table 5.5: The systematic uncertainties of the cross section for electrons from
charm hadron decays. A (B): from eD/enpe lower (upper) bound; C (D): from
higher (lower) estimation of J/ψ, Υ decay and Drell-Yan processes contributions
E: from interpolation of eD/enpe if interpolation is used; F: from the luminosity
uncertainty in the NPE cross section measurement

pT (GeV/c) syst. A syst. B syst. C syst. D syst. E syst. F
3.25 4.7% 6.0% 4.7% 5.7% 1.0% 23.9%
3.75 7.7% 5.5% 7.7% 5.2% 1.3% 17.8%
4.25 11.8% 4.4% 11.8% 4.2% 2.1% 16.0%
4.75 17.1% 3.5% 17.1% 3.3% 2.6% 14.7%
5.25 18.0% 4.2% 18.0% 3.8% 7.5% 17.5%
5.75 13.0% 3.4% 13.0% 3.0% 18.7% 17.0%
7 6.3% 3.7% 6.2% 3.1% 0% 41.3%
9 28.3% 1.4% 28.3% 1.2% 0% 71.3%
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5.1.3 FONLL calculations of NPE

A recent Fixed-Order plus Next-to-Leading-Logarithm (FONLL) calculation of

NPE is reported in [59]. We compare the original FONLL predictions without any

rescaling with the measured data in Figure 5.3, with bottom decays on the left and

charm decays on the right, and we find the predictions agree with the data within

the uncertainties. We divide the measured data by the FONLL prediction to get

the data/FONLL ratio and find it is around 1.03 for most pT , which indicates the

measured data of bottom decay electrons is very close to the central value of the

FONLL calculations. For charm decay electrons, the measured data is however

between the central value and the upper limit of FONLL calculations.

5.1.4 Integrated cross section of bottom decay electrons

For bottom decay electrons, the differential cross sections at high pT from 3 GeV/c

to 10 GeV/c are summed together to get the integrated cross section according

to Equation 5.1.1

dσ

dye
|ye =0 (pT = 3 − 10GeV/c) =

∑

E
d3σ

d~p3
δbinshift pT 2π∆pT (5.1.1)

where E d3σ
d~p3 is the differential cross section at pT bin center, already listed in

Table 5.2. The term δbinshift, which has been discussed in the Au+Au spectrum

analysis, converts the cross section at bin center to bin average. The integrated

cross section is proportional to the sum of bin average, not bin center values. For

the completeness, the δbinshift are 1.038 at 3.25 GeV/c, and then 1.039, 1.028,

1.030, 1.026, 1.027, 1.339, 1.233 for the following bins [73]. The relative large

values 1.339 and 1.233 at 7 and 9 GeV/c have very small effect due to their very

small contributions to the total cross section.
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With the discussion above, we obtain the middle rapidity cross sections:

dσB→e+B→D→e

dye
|ye=0(3 < pT < 10GeV/c) = 4.0± 0.5(stat.)± 1.1(syst.)nb (5.1.2)

and

dσD→e

dye
|ye=0(3 < pT < 10GeV/c) = 6.2 ± 0.7(stat.) ± 1.5(syst.)nb (5.1.3)

where we assumed that there is no correlation between the bin-by-bin uncer-

tainties, so the uncertainties of different pT bins are added in quadrature and the

8.1% global luminosity uncertainty is then added as an overall uncertainty.

It is important to note here the eB/enpe ratios reported in [72] include indirect

contributions from the decay chain of bottom quarks decaying to charm quarks,

which in turn decay to electrons, denoted by B → e + B → D → e. Therefore,

the bottom electron cross sections measured here, both differential and integrated,

also include such indirect contributions.

5.2 PYTHIA calculations

In the last section, we introduced the experimental measurement of electrons from

bottom decays alone. In this section, we will discuss this from a theoretical point

of view. In p + p collisions at
√
s = 200 GeV, the bottom quarks are mainly

produced via gluon fusion to bottom and anti-bottom quark pairs, the majority

of which then fragment into open bottom hadrons. The cross section for hidden

bottom systems (bottomonium states) is ∼ 0.1 nb [113], below the 1% level of

bottom quark production.

We use the PYTHIA event generator [92] version 6.409 to simulate p + p

collisions at
√
s = 200 GeV and select electrons from open bottom hadron decays.

The bottom hadrons include B0, B+, B0
s , Λ0

b , Σ0
b , Σ−

b , Σ+
b , Ξ0

b , Ξ−

b and Ω−

b (and
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the charge conjugates, same for the rest of the chapter). We denote all of the direct

bottom decaying to electron processes by B → e. We also select electrons which

come from open charm hadrons as long as the parent charm hadrons originate

from open bottom hadrons (within 3 generations in the decay chain identified in

PYTHIA), and we denote this part by B → D → e. The combined cross section

of these two types of processes is calculated in each pT bin as Equation 5.2.4.

E
d3σ(B→e+B→D→e)

dp3
= σpp

N(B→e+B→D→e)

Nevt2π pT ∆pT ∆y
(5.2.4)

where Nevt is the number of events generated by PYTHIA and N(B→e+B→D→e)

is the number of electrons (plus positrons, and then divided by two) from the

B → e process and the B → D → e process within |ye| < 0.5 in each pT bin, ∆pT

is the size of the pT bins, and ∆y equals 2 × 0.5 = 1 since we choose a rapidity

range of |ye| < 0.5 in accordance with the experimental measurements. σpp is

an overall factor related to the modes of p+p collisions in PYTHIA calculations,

e.g. minimum-bias mode or bottom-triggered mode, and is used to normalize the

simulated spectrum to the measured spectrum.

To do the normalization, we also calculate the integrated bottom decay electron

cross section from pT = 3 GeV/c to pT = 10 GeV/c in the PYTHIA calculation,

which depends on the global factor σpp as mentioned. We determine the value of

σpp so that the integrated cross section of electrons from bottom decays here in

PYTHIA is the same as the experimental value obtained in the previous section,

i.e. 4.0nb. Figure 5.4 shows the normalized spectrum from PYTHIA calculation as

well as the measurement itself (closed red circles). The solid black curve is for the

normalized PYTHIA calculation of B → e plus B → D → e, with the dotted red

curve for B → e and the dashed blue curve for B → D → e only. The parameters

used in this PYTHIA calculation are all default except we use the CTEQ5M1 set

of parton distribution functions (PDF). This set of parameters is referred to as
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the nominal parameter set and it was used in a previous STAR paper [114] with

an earlier PYTHIA version. In particular, we point out MSEL= 1 is being used.

The spectra from PYTHIA calculations are sensitive to MSEL, which controls the

type of pp interactions in PYTHIA simulations. We favor PYTHIA simulations

with MSEL= 1 because it provides minimum-bias p+p interactions that include

processes beyond the leading order ones.

We note that, although over the entire electron pT range, the B → D → e

contribution is close to that of B → e alone, which is an expected coincidence

based on the known branching ratios, it is only about 5% of B → e at high

electron pT 3 GeV/c to 10 GeV/c. This is because the electron spectrum of the

indirect B → D → e process is much softer than that in the direct process. Once

the overall normalization is done, for example the global factor σpp is determined

to be 23.7 mb in this case, we assume both the direct B → e and indirect B →
D → e decay processes are normalized to data. Although both processes can be

projected back to low pT , we will only use the direct B → e process to project the

total bottom cross section for simplicity, and more importantly, for the measured

indirect B → D → e cross section at high pT accounts for too little of the total

cross section of such processes.

Corresponding to the experimental data Table 5.2 in the previous section,

here in Table 5.6 we list the cross sections from the PYTHIA calculation dis-

cussed above with the global factor σpp = 23.7 mb. The statistical uncertainties

are calculated according to the number of electrons plus positrons. Based on this

PYTHIA calculation, we project the integrated cross section of electrons directly

from bottom hadrons (i.e. B → e processes only, excluding B → D → e) over

the entire pT range (0 to 10 GeV/c) to be dσB→e

dye
|ye =0 = 40.2 nb, which is about

10 times of the integrated cross section at high pT (3 to 10 GeV/c). There is a

very small, 0.4%, statistical uncertainty in PYTHIA since we produced 30 Billion

minimum-bias PYTHIA events. The integrated cross section in the 3 GeV/c to
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Table 5.6: The electron from bottom decay differential cross sections and the rela-
tive statistical uncertainties in a normalized PYTHIA calculation with MSEL= 1.
The differential cross sections are bin averages and therefore the pT bin ranges are
listed, instead of the bin centers. The unit for the cross sections is nb GeV −2 c3

pT range(GeV/c) E d3σB→e

d~p3 stat. err E d3σB→D→e

d~p3 stat. err

0-0.5 3.923 1.3% 26.73 0.5%
0.5-1 3.990 0.7% 5.334 0.6%
1-1.5 2.445 0.7% 1.087 1.1%
1.5-2 1.275 0.9% 0.2759 1.8%
2-2.5 0.6435 1.1% 0.08474 2.9%
2.5-3 0.3148 1.4% 0.02643 4.8%
3-3.5 0.1585 1.8% 0.009964 7.1%
3.5-4 0.07984 2.3% 0.004076 10.4%
4-4.5 0.04111 3.1% 0.001419 16.6%
4.5-5 0.02049 4.1% 0.0005044 26.3%
5-5.5 0.01084 5.4% 0.0003147 31.6%
5.5-6 0.005632 7.1% 0.0002155 36.5%
6-6.5 0.002882 9.6% 5.287e-05 70.7%
6.5-7 0.001652 12.2% 2.448e-05 100%
7-7.5 0.0009800 15.2% 3.419e-05 81.6%
7.5-8 0.0005650 19.4% 2.132e-05 100%
8-8.5 0.0003905 22.6% 0 −
8.5-9 0.0002738 26.3% 0 −
9-9.5 8.038e-05 47.1% 0 −
9.5-10 8.473e-05 44.7% 0 −
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Table 5.7: The integrated cross section of electrons from bottom decays
(0 GeV/c< pT <10 GeV/c) in PYTHIA calculations with various parameters.
A value denoted by (D) means it is the PYTHIA default value. The deviations
listed are relative to the nominal set in first row.

〈kT 〉 Max.kT PDF dσB→e

dye
|ye = 0(nb) deviation

2.0GeV(D) 5.0GeV(D) CTEQ5M1 40.2 0
0.5GeV 5.0GeV(D) CTEQ5M1 41.6 +3.5%
1.5GeV 10.0GeV CTEQ5M1 38.5 -4.3%
3.0GeV 15.0GeV CTEQ5M1 42.2 +5%
4.5GeV 20.0GeV CTEQ5M1 36.0 -10.5%

2.0GeV(D) 5.0GeV(D) CTEQ5L (D) 38.8 -3.5%
CDF tuneA 45.7 +14%

10 GeV/c range has a 1.2% statistical uncertainty in PYTHIA. Therefore, the sta-

tistical uncertainties in PYTHIA can be neglected and the statistical uncertainties

associated with these cross section values are just the statistical uncertainties in-

herited from data. In short, for the projected B → e cross section at high pT ,

we estimate the statistical uncertainty is 12.5% and the systematic uncertainty is

27.5%.

To explore the theoretical uncertainties, we use other parameter sets for PYTHIA

calculations. Firstly, we vary the intrinsic kT and the PDF used in the PYTHIA

calculations and find they do not change the results by more than 10%. We list

the results with various kT and PDF in Table 5.7, including the nominal param-

eter set as the first row of the table. The intrinsic kT is a Gaussian distribution

with its width set by parp(91) and the upper cut off set by parp(93). The PDF

is set by mstp(51)=8 for the CTEQ5M1 case, and mstp(51)=7 for the PYTHIA

default CTEQ 5L.

Secondly, we also utilize the parameter set used in the e-h paper, and find that

it gives dσB→e

dye
|ye = 0 = 28.1 nb, 30% lower than the nominal value. Since this is

a large variation, we list the details of this parameter set in Table 5.8 and the

normalized cross sections from this calculation in Table 5.9, which are also shown

in Figure 5.5. 10 billion PYTHIA minimum-bias events were produced for this

148



Table 5.8: The parameters set in the NPE-hadron correlation study
e-h paper [72] PYTHIA parameter value comment

MSEL 1 Minimum-bias
parp(91) 1.5 inital pT

parp(93) 10. maximum pT

pmas(4,1) 1.25 mass of charm
pmas(5,1) 4.8 mass of bottom
mstp(33) 1 using K factor
parp(31) 3.5 K factor, default=1.5
mstp(32) 4 definition of Q2

parp(67) 4 a factor multiplied to Q2

mstp(51) 7 CTEQ5M1
MSTJ(11) 3 peterson function used
PARJ(54) -1.0×10−5 ǫ for charm
PARJ(55) -1.0×10−5 ǫ for bottom

calculation.

In addition, the CDF PYTHIA tuneA [115] parameter set has also been used,

and it gives an integrated cross section of 45.7 nb, which is 14% higher than the

nominal value of 40.2 nb.

One important point we notice is that PYTHIA can simulate different p+p scat-

tering processes, so one needs to make a choice. In the PYTHIA calculations

presented above, we always use the minimum-bias processes, i.e. both high Q2

processes and low Q2 processes [92], and the control parameter MSEL is always

1. Below we will use a different process, namely the triggered bottom quark pro-

duction mode with MSEL=5, which only has leading order processes, e.g. qq̄ and

gg scatterings. With exactly the same parameters as the nominal PYTHIA calcu-

lation, except MSEL=5, this mode produces a much softer spectrum shape, and

thus a much higher integrated cross section. dσB→e

dye
|ye =0 = 53.8nb is obtained

after being normalized to the experimental data at high pT . Only 10 million such

PYTHIA events are produced, but since all of them have bottom quarks, the sta-

tistical uncertainty from PYTHIA is even smaller than the previous calculations.

The details are listed in Table 5.10 and plotted in Figure 5.6. We emphasize the
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Table 5.9: The electron from bottom decay differential cross sections from a
PYTHIA calculation with parameters in the NPE-hadron correlation study [72],
listed in Table 5.8. The unit for the cross sections is nb GeV −2 c3

pT range(GeV/c) E d3σB→e

d~p3 stat. err E d3σB→D→e

d~p3 stat. err

0-0.5 2.723 1.7% 17.64 0.7%
0.5-1 2.585 1.0% 3.731 0.9%
1-1.5 1.564 1.0% 0.8490 1.4%
1.5-2 0.8389 1.2% 0.2455 2.2%
2-2.5 0.4553 1.4% 0.08174 3.3%
2.5-3 0.2427 1.7% 0.03018 5.0%
3-3.5 0.1346 2.2% 0.01101 7.5%
3.5-4 0.07413 2.7% 0.004839 10.6%
4-4.5 0.04265 3.4% 0.002303 14.4%
4.5-5 0.02470 4.2% 0.001352 17.8%
5-5.5 0.01334 5.4% 0.0005631 26.3%
5.5-6 0.008315 6.5% 0.0002305 39.2%
6-6.5 0.004290 8.7% 0.0001957 40.8%
6.5-7 0.002628 10.7% 7.551e-05 63.2%
7-7.5 0.001547 13.5% 7.031e-05 63.2%
7.5-8 0.0009997 16.2% 2.631e-05 100%
8-8.5 0.0004943 22.4% 0 −
8.5-9 0.0003146 27.2% 0 −
9-9.5 0.0003416 25.4% 1.102e-05 141.4%
9.5-10 0.0001464 37.8% 0 −

150



 (GeV/c)
T

p
4 6 8 10

)3 c
-2

 (
m

b 
G

eV
3

/d
p

σ3
E

d

-1010

-910

-810

-710

-610

e→D→e+B→measured B

e→D→e+B→PYTHIA B

e→PYTHIA B

e→D→PYTHIA B

e_h
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parameters used in the NPE-hadron correlation study [72].
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Table 5.10: The electron from bottom decay differential cross sections from a
normalized PYTHIA calculation with the same nominal parameters except in a
bottom production mode. The unit for the cross sections is nb GeV −2 c3

pT range(GeV/c) E d3σB→e

d~p3 stat. err E d3σB→D→e

d~p3 stat. err

0-0.5 5.324 0.7% 36.93 0.3%
0.5-1 5.604 0.4% 7.192 0.3%
1-1.5 3.486 0.4% 1.330 0.6%
1.5-2 1.761 0.4% 0.3094 1.0%
2-2.5 0.8337 0.6% 0.08253 1.8%
2.5-3 0.3807 0.7% 0.02580 2.9%
3-3.5 0.1740 1.0% 0.00891 4.5%
3.5-4 0.08026 1.4% 0.003206 6.9%
4-4.5 0.03869 1.9% 0.001269 10.3%
4.5-5 0.01870 2.5% 0.0004674 16.1%
5-5.5 0.009073 3.5% 0.0002636 20.4%
5.5-6 0.004719 4.6% 5.516e-05 42.6%
6-6.5 0.002445 6.1% 2.768e-05 57.7%
6.5-7 0.001491 7.6% 2.136e-05 63.2%
7-7.5 0.0007159 10.5% 2.386e-05 57.7%
7.5-8 0.0003907 13.8% 1.116e-05 81.7%
8-8.5 0.0002901 15.5% 6.990e-06 100%
8.5-9 0.0001483 21.1% 3.295e-06 141.4%
9-9.5 8.105e-05 27.7% 0 −
9.5-10 3.845e-05 39.2% 2.957e-06 141.4%

difference on the bottom decay electron cross section here is 34% and it indicates

a large theoretical uncertainty purely from different PYTHIA modes.

In conclusion, based on PYTHIA calculations normalized to data, we measure

that the integrated B → e cross section at mid-rapidity could range from 28.1 nb

to 53.8 nb depending PYTHIA simulation mode and other parameters. The dif-

ference indicates the scale of the theoretical uncertainty. Also, the B → e cross

section from the data is found to be 1.03 times higher than FONLL predictions.
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5.3 Bottom production cross section

To get the total bottom quark production cross section based on B → e cross

section at mid-rapidity, one needs to consider the branching ratio (B.R.) of the

semi-leptonic decays of all the bottom hadrons and the rapidity distribution, ac-

cording to Equation 5.3.5.

σbb̄ =
σB→e

B.R.

=

∫

dσB→e

dyB
dyB

B.R.

=
c1(

∫ 0.5

−0.5
dσB→e

dyB
dyB)

B.R.

=
c1 c2(

∫ 0.5

−0.5
dσB→e

dye
dye)

B.R.

(5.3.5)

where
∫ 0.5

−0.5
dσB→e

dye
dye equals to dσB→e

dye
|ye = 0. The first rapidity correction fac-

tor, c1, accounts for the large correction needed to extrapolate from mid-rapidity

to the full rapidity range, and thus it is defined as

R dσB→e
dyB

dyB

R 0.5
−0.5

dσB→e
dyB

dyB

. The second

rapidity correction factor, c2, is a small correction to convert the electron rapidity

distribution to bottom hadron rapidity distribution, both at middle rapidity. It

is defined as

R 0.5
−0.5

dσB→e
dyB

dyB

R 0.5
−0.5

dσB→e
dye

dye
, where yB is the bottom hadron rapidity, and ye is the

electron rapidity. Both c1 and c2 can be calculated in PYTHIA events.

The averaged branching ratio of the semi-leptonic decays depends on the ad-

mixture of bottom hadrons. The bottom hadron admixture has not been measured

at RHIC and the PDG has a summary of measurements at LEP, Tevatron, and

Spp̄S [2]. In Table 5.11, we compare the admixture produced by PYTHIA with

the PDG one, and they are rather consistent. We use the values from PYTHIA

as the nominal values. We notice that in our PYTHIA calculation the averaged

B.R. value is 10.4%, and it is very close to the lower limit of PDG value 10.5%. It
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Table 5.11: The bottom hadron fractions in the admixture reported in PDG and
in our nominal PYTHIA calculation, and the corresponding B.R. for semi-leptonic
decays. The relative statistical errors from PYTHIA are always smaller than 1%.

Particle Fraction in PDG in PYTHIA B.R. in PDG in PYTHIA
B0 (40.1 ± 1.3)% 39.5% (10.33 ± 0.28)% 10.52%
B+ (40.1 ± 1.3)% 39.7% (10.99 ± 0.28)% 10.47%
B0

s (11.3 ± 1.3) % 11.6% (7.9 ± 2.4)% 10.53%
bottom baryon (8.5 ± 2.2)% 9.1% (∼ 9.3)% 9.24%

Average - - (10.86 ± 0.35)% 10.4%

is conservative enough to use the upper limit of PDG B.R., 11.2%, as our upper

limit, which is equivalent to an approximately 8% relative uncertainty, smaller

than the 13% systematic uncertainty from the measured data, let alone the much

larger theoretical uncertainty. The statistical uncertainty from PYTHIA is still

smaller than 1%.

The admixture of the bottom baryons in our PYTHIA calculation is 77% Λ0
b , a

total of 12% Σ0
b , Σ−

b and Σ+
b , a total of 11% Ξ0

b and Ξ−

b , and less than 1% Ω−

b . The

dominate component, Λ0
b has a semi-leptonic decay B.R. = 10.5%, making the

bottom baryons B.R. very close to that of bottom mesons. As a result, the final

results are not sensitive to the exact fraction of bottom baryons in the admixture

of bottom hadrons.

The first rapidity correction factor c1 is calculated as the number of bottom

hadrons in all rapidity divided by that within |yB| < 0.5. The bottom hadrons

are inclusive, including but not limited to those decaying to electrons. The second

rapidity correction factor c2 is calculated as the number of bottom hadrons that

decay to electrons within hadron rapidity |yB| < 0.5 divided by the number of

electrons from bottom hadron decays within electron rapidity |ye| < 0.5. We

determine c1 = 3.01, c2 = 1.15 in the nominal minimum-bias PYTHIA calculation

and c1 = 3.07, c2 = 1.15 in the PYTHIA calculation with MSEL=5, both with

less than 1% statistical uncertainties.

Based on our PYTHIA calculations, the total bottom quark production cross
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section in p+p collisions at
√
s = 200 GeV is measured to be σmb

bb̄
= 40.2nb×1.15×3.01

0.104
=

1.34 µb in the minimum-bias mode and σB−trigger

bb̄
= 53.8×1.15×3.07

0.104
= 1.83 µb in the

bottom triggered mode. In [59], the central FONLL prediction of total cross sec-

tion of bottom production has been reported to be 1.87+0.99
−0.67µb. The measured

cross section of bottom hadron decaying to electrons is 1.03 times higher than the

FONLL central prediction at high pT , and thus we multiply 1.87 µb by 1.03 and

obtain σFONLL
bb̄

=1.93 µb. Finally, we note that these measurements all inherit the

12.5% statistical and 27.5% systematic uncertainties from the measured B → e

cross section at high pT .
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CHAPTER 6

Conclusion and Outlook

The spectra of the non-photonic electrons in Au+Au collisions at
√
s

NN
= 200

GeV have been measured in this dissertation, with a much improved precision

over the previous STAR measurements [61]. The nuclear modification factors of

NPE are also calculated accordingly, which approach as low as approximately

RAA ∼ 0.3, confirming a significant heavy quark energy loss indicative of a strong

coupling between heavy quarks and the QGP medium.

The recent understanding is that elastic collisions are likely to play an impor-

tant role in the heavy quark-medium coupling interaction. Indeed, collisional

energy loss models based on non-perturbative processes such as heavy flavor

hadron/resonance formation inside QGP or based on improved pQCD calcula-

tions agree with our measured NPE RAA values within uncertainties. However,

for definitive data-model comparisons, charm and bottom decay electrons must

be separated, since their energy loss are often quite different in the models.

The first STAR measurement of high pT non-photonic electron elliptic flow,

which closely reflects the elliptic flow of heavy flavor hadrons, is also presented

in this dissertation. The NPE elliptic flow is not only finite but also sizable and

generally higher than current model predictions. Much larger data sample are

required to reduce the statistical uncertainty of the measurement. Our first at-

tempt of the NPE elliptic flow measurement allowed us to evaluate many relevant

experimental systematics and provide valuable guidance for further measurement

from STAR.
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In addition to elliptic flow, we initialized a study with another more differential

probe, the NPE-hadron azimuthal correlation. The preliminary results indicate a

broadening of the away side peak, which is likely due to heavy quark jet-medium

interactions, albeit different interpretations and hidden systematic uncertainties

need further investigations with better statistics. If this modification is truly a

result of heavy quark jet-medium interactions, it could provide an independent

way to constrain both the energy loss mechanism and the medium evolution.

In summary, the NPE from heavy quark decays can provide quantitative in-

formation about the QGP. Our results have posted serious challenges to the early

dynamical models that worked well for light quark energy loss. The NPE az-

imuthal anisotropy and azimuthal correlation studies are emerging to be a probe

for both the heavy quark-medium interactions and the dynamical evolution of the

QGP medium itself. The outstanding difficulties experimentally are the limited

ability to separate charm and bottom decays in heavy ion collisions, and lim-

ited data sample for more differential studies. The STAR Heavy Flavor Tracker

upgrade will truly fulfill the capability of heavy flavor probes by measuring sepa-

rated charm and bottom production. Heavy Quark probes are expected to quan-

titatively measure dynamical properties of the Quark-Gluon Plasma created in

high-energy nucleus-nucleus collisions, which will deepen our understanding of

the underlying fundamental theory of Quantum ChromoDynamics and the nature

of Quark-hadron phase transition in the early universe.
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APPENDIX A

List of Rejected Runs

A: Find outliers with Ref-Multiplicity three RMS away from the average over the

entire Run 2010(Standard STAR bad runs)

11005042, 11006004, 11006005, 11006008, 11007015, 11023048, 11025034,

11025038, 11025054, 11026005, 11026008, 11026021, 11026022, 11026023,

11026025, 11026067, 11026068, 11030080, 11031061, 11035072, 11036026,

11037035, 11037037, 11037060, 11039047, 11044029, 11049023, 11051038,

11052011, 11053057, 11054059, 11054062, 11058005, 11072032, 11072044,

11072045, 11073001, 11073003, 11075048

B: No BEMC runs (Standard STAR bad runs)

11002140, 11002141, 11002142, 11002143, 11002144, 11015069, 11015071,

11016024, 11017006, 11018007, 11018008, 11019080, 11019081, 11035008,

11035009, 11038048, 11038049, 11038050, 11047065, 11047066, 11047067,

11048037, 11049001, 11049002, 11049005, 11051049, 11051051, 11051055,

11051063, 11051064, 11051068, 11054021, 11054022, 11059076, 11059077,

11061008, 11061009, 11061034, 11061037, 11061038, 11063006, 11063008,

11063011, 11063013, 11063014, 11063015, 11063016, 11063017, 11065038,

11066045, 11073049, 11075039, 11075045

C: Runs with significant shift of primary vertex position and mean track

pT (Standard STAR bad runs)
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11028004, 11028005, 11028006, 11028007, 11028008, 11028009, 11028010,

11028011, 11028012, 11028013, 11028014, 11028015, 11028016, 11028017,

11028018, 11028019, 11028020, 11028021, 11028022, 11028023, 11028024,

11028025, 11028026, 11028027, 11026042

D: Runs with 4 or more bad TPC Readout boards (RDO) (Standard STAR

bad runs)

11021015, 11021026, 11021027, 11021028, 11021030, 11021031, 11021032,

11004007, 11004008, 11004009, 11004010, 11004011, 11004012, 11004013,

11004014, 11004015, 11004016, 11004018, 11004020, 11004021, 11004023,

11004024, 11004025, 11004026, 11004028, 11004029, 11004030, 11004032,

11004033, 11004034, 11004035, 11004037, 11004038,

11003101, 11003102, 11041022, 11041023, 11041040, 11041041, 11042001,

11042002, 11042003, 11042004, 11042005, 11042006, 11042007, 11042008,

11042011, 11042012, 11042018, 11042019, 11042020, 11042021, 11042022,

11042023, 11042024, 11042025, 11042026, 11042027, 11042042, 11042043,

11042044, 11042045, 11042046, 11042047, 11042048, 11042049

E: Runs with too few (less than one thousand) good MiniBias events (Stan-

dard STAR bad runs)

11011019, 11030041, 11039067, 11054024, 11054066, 11057012, 11057035,

11057036, 11058050, 11058083, 11059043, 11059055, 11059060, 11059075,

11060049, 11060059, 11060076, 11061008, 11061021, 11061037, 11063007,

11063017, 11063036, 11063083, 11064003, 11064023

F:Runs with bad NPE11/MiniBias events ratio (Non-Standard STAR bad

runs)

11051050,11051045,11047067,11047066,11047065,11044024,
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11038050,11038049,11038048,11038047,11030045,11028004,

11025069,11019081,11019080,11019079,11018036,11018008,

11018007,11017006,11016024,11015069,11011087,11011084,

11011083,11011082,11011081,11011080,11011079,11011078,

11011077,11011053

G:Runs with different efficiencies of the cuts |VZ| < 30cm and |V TPC
Z −

V V PD
Z | < 3cm (Non-Standard STAR bad runs)

11071056,11071055,11040078,11031064,11030068,11030067,11030065,

11030025,11030009,11029087,11029086,11026010,11019001,11018003
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APPENDIX B

Error propagation in elliptic flow calculations

The Standard Deviation (or “error”) of a measured variable is the square root of

the variance of the sample mean for this variable, i.e.

S =
RMS√
N

=

√

P

(xi−µ̂)2

N√
N

(B.0.1)

where root mean square (RMS)=
√

P

(xi−µ̂)2

N
is used.

To combine several data sets

S2
total =

P

α[
P

i(xαi−µ̂α)2+Nαµ̂2
α]

P

α Nα
− [

P

α(Nαµ̂α)
P

α Nα
]2

∑

αNα
(B.0.2)

where α means different data sets, e.g. different η bins or pT bins.

We can check this with, for example, the case of two data sets, where

µ̂ =
N1µ̂1 +N2µ̂2

N1 +N2
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and N = N1 +N2. Then,

RMS2 =

∑

1(x1i − N1µ̂1+N2µ̂2

N1+N2
)2 +

∑

2(x2i − N1µ̂1+N2µ̂2

N1+N2
)2

N1 +N2

=

∑

1[x1i − µ̂1 + N2(µ̂1−µ̂2)
N1+N2

]2 +
∑

2[x2i − µ̂2 + N1(µ̂2−µ̂1)
N1+N2

]2

N1 +N2

=

∑

1{(x1i − µ̂1)
2 + [N2(µ̂1−µ̂2)

N1+N2
]2 + (x1i − µ̂1)

2N2(µ̂1−µ̂2)
N1+N2

}
N1 +N2

+

∑

2{(x2i − µ̂2)
2 + [N1(µ̂2−µ̂1)

N1+N2
]2 + (x2i − µ̂2)

2N1(µ̂2−µ̂1)
N1+N2

}
N1 +N2

=
[
∑

1(x1i − µ̂1)
2 +

∑

2(x2i − µ̂2)
2] + (N1N

2
2 +N2

1N2)(
µ̂1−µ̂2

N1+N2
)2

N1 +N2

=
[
∑

1(x1i − µ̂1)
2 +

∑

2(x2i − µ̂2)
2] + (N1N2)(µ̂1−µ̂2)2

N1+N2

N1 +N2

(B.0.3)

where
∑

1(x1i − µ̂1) = 0 and
∑

2(x2i − µ̂2) = 0 are used. Finally,

S2 =
RMS2

N1 +N2

=
[
∑

1(x1i − µ̂1)
2 +

∑

2(x2i − µ̂2)
2] + (N1N2)(µ̂1−µ̂2)2

N1+N2

(N1 +N2)2
(B.0.4)

At the same time, in the case of two (2) bins, the original formula becomes

S2
total =

P

1(x1i−µ̂1)2+
P

2(x2i−µ̂2)2+N1µ̂2
1+N2µ̂2

2

N1+N2
− [N1µ̂1+N2µ̂2

N1+N2
]2

N1 +N2

=

∑

1(x1i − µ̂1)
2 +

∑

2(x2i − µ̂2)
2

(N1 +N2)2

+
(N1µ̂

2
1 +N2µ̂

2
2)(N1 +N2) − (N2

1 µ̂
2
1 +N2

2 µ̂
2
2 + 2N1µ̂1N2µ̂2)

(N1 +N2)3

=

∑

1(x1i − µ̂1)
2 +

∑

2(x2i − µ̂2)
2

(N1 +N2)2
+
N1N2(µ̂1 − µ̂2)

2

(N1 +N2)3
= S2

(B.0.5)
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[92] T. Sjöstrand, S. Mrenna, P. Skands, “PYTHIA 6.4 Physics and Manual.”
JHEP 0605, 026 (2006);
http://home.thep.lu.se/∼torbjorn/pythia/pythia6409.f

[93] T. Ullrich, “Study of the contribution of J/ψ decay electrons to the NPE
yield measured.”
www.star.bnl.gov/protected/heavy/ullrich/jpsiee.pdf

[94] T. Sjöstrand, S. Mrenna, P. Skands, “A Brief Introduction to PYTHIA
8.1.” Comput. Phys. Commun. 178,852 (2008).

[95] A. Adare et al. (PHENIX Collaboration), “Heavy-quark production in
p+pand energy loss and ow of heavy quarks in Au+Aucollisions at

√
s

NN
=

200 GeV.” Phys. Rev. C84, 044905 (2011).

170



[96] D. Kikola, M. Mustafa, “Ke3 → e background in non-photonic electron
studies in p+p 200 GeV.”
http://drupal.star.bnl.gov/STAR/system/files/Npe Ke3 Bg March 1 2012.pdf

[97] GEANT 3.21, CERN Program Library.
http://wwwasdoc.web.cern.ch/wwwasdoc/geant html3/geantall.html

[98] O. D. Tsai, Notes on SMD0+SAS Optimization (1998).
www.physics.ucla.edu/%7Etsai/bsmd/sassmdopt.ps.

[99] N. M. Kroll, W. Wada, “Internal Pair Production Associated with the
Emission of High-Energy Gamma Rays.” Phys. Rev. 98, 1355 (1955).

[100] A. Adare et al. (PHENIX Collaboration), “Detailed measurement of the
e+e- pair continuum in p+p and Au+Au collisions at

√
s

NN
= 200 GeV

and implications for direct photon production.” Phys. Rev. C81, 034911
(2010).

[101] B. I. Abelev et al. (STAR Collaboration), “Transverse Momentum and
Centrality Dependence of High-pT Nonphotonic Electron Suppression in
Au+Au Collisions at

√
s

NN
= 200 GeV.” Phys. Rev. Lett. 98, 192301

(2007).

[102] A. Adare et al. (PHENIX Collaboration), “Measurement of High-pT Single
Electrons from Heavy-Flavor Decays in p+p Collisions at

√
s = 200GeV.”

Phys. Rev. Lett. 97, 252002 (2006).

[103] http://www.star.bnl.gov/protected/common/common2010/centrality/
200GeV/table/table Ncoll vs centrality systematicerror.txt

[104] P. B. Gossiaux, J. Aichelin, “Towards an understanding of the RHIC single
electron data.”Phys. Rev. C78, 014904 (2008).

[105] J. Barrette et al. (E877 Collaboration), “Proton and pion production rel-
ative to the reaction plane in Au+Au collisions at 11A GeV/c.” Phys.

Rev. C56, 3254 (1997).

[106] http://root.cern.ch

[107] A. Ohlson, “Calculating Jet vn and the Event Plane in the Presence of a
Jet.” arXiv:1205.1172.

[108] B. H. J. Biritz, “Electron-hadron azimuthal correlation in Au+Au Colli-
sions at

√
s

NN
= 200 GeV.” Ph.D. dissertation, University of California,

Los Angeles (2010).

[109] P. Sorensen, “Higher flow harmonics in heavy ion collisions from STAR.”
J. Phys. G38, 124029 (2011).

171



[110] S. S. Gubser, S. S. Pufu, A. Yarom, “Sonic booms and diffusion wakes
generated by a heavy quark in thermal AdS/CFT.” Phys. Rev. Lett. 100,
012301 (2008).

[111] S. S. Gubser, S. S. Pufu, A. Yarom, “Shock waves from heavy-quark mesons
in AdS/CFT.” JHEP807, 108 (2008).

[112] J. Noronha, M. Gyulassy, G. Torrieri, “Di-Jet Conical Correlations As-
sociated with Heavy Quark Jets in antide Sitter Space/Conformal Field
Theory Correspondence.” Phys. Rev. Lett. 102, 102301 (2009).

[113] B. I. Abelev et al. (STAR Collaboration) “Υ cross section in p+p collisions
at

√
s = 200 GeV.” Phys. Rev. D82, 012004 (2010)

[114] J. Adams et al. (STAR Collaboration), “Open charm yields in d + Au
collisions at

√
s

NN
= 200GeV.” Phys. Rev. Lett. 94, 062301 (2005).

[115] http://www.phys.ufl.edu/∼rfield/cdf/tunes/py tuneA.html

172


